Вопрос задан 25.07.2018 в 05:01. Предмет Математика. Спрашивает Николаева Диана.

Первый маляр , работая один, выполняет покраску объекта за 12 дней , а второй маляр, работая один,

выполняет эту же покраску за 6 дней.За сколько дней выполнят покраску этого объекта оба маляра , работая вместе ?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Степанов Степан.
За 3 дня )))))))))))))))))))))))))))))))))))))))))))

0 0
Отвечает Камнев Никита.
12+6=18 за 18 дней выполнят покраску
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Painting Time for Each Painter

To determine how long it would take for both painters to complete the painting job together, we first need to calculate the time it takes for each painter to complete the job individually.

According to the information provided, the first painter can complete the painting of the object in 12 days when working alone, while the second painter can complete the same painting job in 6 days when working alone.

Calculation of Combined Painting Time

To calculate the combined painting time for both painters, we can use the concept of work rates. The work rate is inversely proportional to the time taken to complete a task. Therefore, the work rate of each painter can be calculated as the reciprocal of the time taken by each painter to complete the job.

The work rate of the first painter is 1/12 (1 painting job in 12 days), and the work rate of the second painter is 1/6 (1 painting job in 6 days).

To calculate the combined work rate when both painters work together, we can add their individual work rates:

Combined Work Rate = Work Rate of Painter 1 + Work Rate of Painter 2

Combined Work Rate = 1/12 + 1/6

Simplifying the equation:

Combined Work Rate = 1/12 + 2/12

Combined Work Rate = 3/12

Combined Work Rate = 1/4

The combined work rate of both painters is 1/4, which means they can complete 1/4 of the painting job in one day when working together.

To calculate the number of days required to complete the entire painting job, we can use the formula:

Number of Days = 1 / Combined Work Rate

Substituting the combined work rate value:

Number of Days = 1 / (1/4)

Simplifying the equation:

Number of Days = 4

Therefore, both painters working together can complete the painting job in 4 days.

Conclusion

Based on the given information, the first painter takes 12 days to complete the painting job alone, the second painter takes 6 days to complete the job alone, and both painters working together can complete the job in 4 days.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос