Log4^2 x - log4 x^5 + 4 =0
Ответы на вопрос
ОДЗ: x > 0
пусть
отсюда:
To solve the equation log₄(x^2) - log₄(x^5) + 4 = 0, you can use the properties of logarithms.
First, let's apply the properties of logarithms to simplify the equation:
log₄(x^2) - log₄(x^5) + 4 = 0
Now, we can use the properties of logarithms to simplify further:
log₄(x^2) - log₄(x^5) + log₄(4) = 0
Now, we can combine the logarithms using the properties of logarithms:
log₄((x^2) / (x^5)) + log₄(4) = 0
Next, use the properties of logarithms to combine the terms inside the logarithm:
log₄((1 / x^3)) + log₄(4) = 0
Now, we have a sum of logarithms, so we can use the properties of logarithms to combine them:
log₄((1 / x^3 * 4)) = 0
Now, we have a single logarithm, and we want to find the value of x. To do this, we can use the property of logarithms that says if logₐ(b) = c, then a^c = b. In this case, a = 4, c = 0, and b = 1 / (x^3 * 4). So:
4^0 = 1 / (x^3 * 4)
Since 4^0 is equal to 1, we have:
1 = 1 / (x^3 * 4)
Now, multiply both sides of the equation by x^3 * 4 to isolate x:
x^3 * 4 = 1
Now, divide both sides by 4 to solve for x^3:
x^3 = 1/4
To find x, take the cube root of both sides:
x = ∛(1/4)
x = 1/∛4
So, the solution to the equation log₄(x^2) - log₄(x^5) + 4 = 0 is:
x = 1/∛4
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
