
Вопрос задан 21.10.2023 в 19:41.
Предмет Математика.
Спрашивает Аракелян Армен.
Решите уравнение x(x^2+2x+1)=6(x+1).


Ответы на вопрос

Отвечает Скосырский Кирилл.
Х(х^2+2x+1)=6(x+1)
x(x+1)^2=6(x+1)
x(x+1)=6
x^2+x=6
x^2+x-6=0
D=1+24=25
x1= (-1+5)/2=2
x2=(-1-5)/2=-3
Ответ 2 и -3
x(x+1)^2=6(x+1)
x(x+1)=6
x^2+x=6
x^2+x-6=0
D=1+24=25
x1= (-1+5)/2=2
x2=(-1-5)/2=-3
Ответ 2 и -3



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Разложим выражение и решим уравнение:
Раскроем скобки:
Переносим все члены в одну сторону:
Упростим:
Теперь попробуем найти решения этого уравнения. Я вижу, что является корнем этого уравнения, так как подставив , получим 0.
Теперь можем разделить уравнение на :
Это равносильно:
Это квадратное уравнение. Дискриминант , и так как дискриминант отрицательный, у нас нет действительных корней.
Таким образом, у уравнения есть два комплексных корня, а один действительный корень .


Похожие вопросы

Математика 34
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili