
Найди НОД 14 7 НОД 3 11 НОД62 63 НОД 29 19 НОД 98 99


Ответы на вопрос

НОД (14,7)=7, НОД (45,9)=9, НОД (29,19)=1
НОД (26,13)=13, НОД (11,66)=11, НОД (54,55)=1
НОД (48,8)=8, НОД (13,5)=1, НОД (62,63)=1
НОД (64,16)=16, НОД (3,11)=1, НОД (98,99)=1



Finding the Greatest Common Divisor (GCD)
To find the greatest common divisor (GCD) of two numbers, we can use the Euclidean algorithm. The Euclidean algorithm states that the GCD of two numbers is equal to the GCD of the remainder when the larger number is divided by the smaller number, until the remainder is zero.
Let's find the GCD of the given numbers:
1. GCD of 14 and 7: - Dividing 14 by 7 gives a remainder of 0. - Therefore, the GCD of 14 and 7 is 7.
2. GCD of 3 and 11: - Dividing 11 by 3 gives a remainder of 2. - Dividing 3 by 2 gives a remainder of 1. - Dividing 2 by 1 gives a remainder of 0. - Therefore, the GCD of 3 and 11 is 1.
3. GCD of 62 and 63: - Dividing 63 by 62 gives a remainder of 1. - Dividing 62 by 1 gives a remainder of 0. - Therefore, the GCD of 62 and 63 is 1.
4. GCD of 29 and 19: - Dividing 29 by 19 gives a remainder of 10. - Dividing 19 by 10 gives a remainder of 9. - Dividing 10 by 9 gives a remainder of 1. - Dividing 9 by 1 gives a remainder of 0. - Therefore, the GCD of 29 and 19 is 1.
5. GCD of 98 and 99: - Dividing 99 by 98 gives a remainder of 1. - Dividing 98 by 1 gives a remainder of 0. - Therefore, the GCD of 98 and 99 is 1.
Please let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili