Вопрос задан 23.07.2018 в 03:36. Предмет Математика. Спрашивает Пикулев Константин.

Два поезда шли с одинаковой скоростью. Один из них был в пути 14 ч, другой - 5 ч. С какой скоростью

шёл каждый поезд, если второй прошёл на 738 км меньше, чем первый?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузьмин Данила.

Пусть  х скорость каждого, тогда путь первого 14х, а путь второго 5х. Зная, что второй прошёл на 738 км меньше, уравняем:
14x = 5x+738
14x-5x = 738
9x = 738
x = 738:9
х = 82 (км/ч) скорость каждого поезда
Ответ: 82 км/час

0 0
Отвечает Великсаров Денис.

1). 14-5=9 (ч) разница времени; 2). 738:9=82 (км/ч) с такой скоростью двигались поезда; 3). 14*82=1148 (км) проехал один поезд; 4). 5*82=410 (км) проехал другой поезд. ОТВЕТ: скорость каждого поезда 82 км/ч.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have two trains that traveled for different durations and one train traveled a shorter distance than the other. We need to find the speed of each train. Let's denote the speed of the first train as x and the speed of the second train as y.

Solution

To solve this problem, we can use the formula: speed = distance / time.

Let's denote the distance traveled by the first train as d1 and the time taken by the first train as t1. Similarly, let's denote the distance traveled by the second train as d2 and the time taken by the second train as t2.

We are given the following information: - The first train traveled for 14 hours. - The second train traveled for 5 hours. - The second train traveled 738 km less than the first train.

Using the formula mentioned above, we can set up the following equations:

Equation 1: The speed of the first train, x, is given by: x = d1 / t1

Equation 2: The speed of the second train, y, is given by: y = d2 / t2

Equation 3: The second train traveled 738 km less than the first train, so we have: d2 = d1 - 738

We can substitute Equation 3 into Equation 2 to eliminate d2: y = (d1 - 738) / t2

Now, we can substitute Equation 1 and the new form of Equation 2 into Equation 3 to solve for x:

x = d1 / t1 y = (d1 - 738) / t2 d2 = d1 - 738

Calculation

Substituting Equation 3 into Equation 2, we get: y = (d1 - 738) / t2

Substituting Equation 1 and the new form of Equation 2 into Equation 3, we get: (d1 - 738) = (d1 / t1) * 5

Simplifying the equation: 5d1 - 3690 = (d1 / t1) * 5

Multiplying both sides by t1: 5d1 * t1 - 3690 * t1 = d1 * 5

Simplifying further: 5d1 * t1 - d1 * 5 = 3690 * t1

Factoring out d1: d1 * (5t1 - 5) = 3690 * t1

Dividing both sides by (5t1 - 5): d1 = (3690 * t1) / (5t1 - 5)

Now, we can substitute this value of d1 into Equation 3 to find d2: d2 = d1 - 738

Finally, we can substitute the values of d1 and d2 into Equation 1 and Equation 2 to find the speeds of the trains x and y.

Answer

To find the speeds of the two trains, we need to calculate the values of d1 and d2 using the equations mentioned above.

Let's calculate the values of d1 and d2:

d1 = (3690 * t1) / (5t1 - 5) d2 = d1 - 738

Given that the first train traveled for 14 hours, we can substitute t1 = 14 into the equations:

d1 = (3690 * 14) / (5 * 14 - 5) d2 = d1 - 738

Simplifying the equations:

d1 = 3690 / 65 d2 = d1 - 738

Calculating the values:

d1 ≈ 56.769 km d2 ≈ 56.769 km - 738 km ≈ -681.231 km

Since the distance traveled cannot be negative, it seems there might be an error in the given information or calculations. Please double-check the information provided and ensure the accuracy of the values.

If you have any further questions, please let me know.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос