Вопрос задан 25.09.2023 в 19:20. Предмет Математика. Спрашивает Иванов Савелий.

Бічна сторона рівнобедреного трикутника дорівнює 10 см і утворює з основою кут 60˚. Знайдіть основу

і висоту, яка проведена до неї.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мартинчук Андрій.

Ответ: основание = 10, высота = 5 * sqrt(3)

Пошаговое объяснение:

Треугольник - равносторонний
По Пифагору высчитана высота. А в р/с треуг высота высчитывается, как (a * sqrt(3))/2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження основи і висоти рівнобедреного трикутника, давайте скористаємося інформацією, яку ми маємо.

  1. Бічна сторона рівнобедреного трикутника дорівнює 10 см.
  2. Кут між цією бічною стороною і основою дорівнює 60 градусів.

Розглянемо, якщо ми позначимо основу трикутника як "b" і висоту як "h". Основа трикутника розділена в півовину більшої основи трикутника, отже, можна сказати, що:

b = 2 * h

Також, ми знаємо, що бічна сторона трикутника дорівнює 10 см, і вона є гіпотенузою прямокутного трикутника, де висота є однією з катетів, а інший катет утворює кут 60 градусів. Тобто, ми можемо використовувати тригонометричні функції для знаходження висоти.

За теоремою синусів маємо:

sin(60°) = h / 10

sin(60°) = √3 / 2 (знаючи значення sin(60°))

Тепер знайдемо висоту:

h = (√3 / 2) * 10 h = (√3 * 10) / 2 h = (5√3) см

Тепер, ми можемо знайти основу трикутника:

b = 2 * h b = 2 * (5√3) см b = 10√3 см

Отже, основа рівнобедреного трикутника дорівнює 10√3 см, а висота, яка проведена до неї, дорівнює 5√3 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос