
(x-4,7).7,3=38,69


Ответы на вопрос

x-4,7=5,3
x=5,3+4,7
x=10



(х-4,7)* 7,3=38,69
7,3х-34,31=38,69
7,3х=73
х=73:7,3
х=10
(10-4,7)* 7,3=38,69



It looks like you have an equation involving two points in the form (x1, y1) and (x2, y2) and a set of coordinates (7, 3). You're trying to determine if these points satisfy the equation. To do that, we can use the distance formula, also known as the Pythagorean theorem for the distance between two points in a coordinate plane:
Distance = √((x2 - x1)^2 + (y2 - y1)^2)
In your case, you have two points:
Point A: (x1, y1) = (x - 4, 7) Point B: (x2, y2) = (7, 3)
You want to find the distance between these two points:
Distance = √((7 - (x - 4))^2 + (3 - 7)^2)
Now, let's simplify this expression:
Distance = √((7 - x + 4)^2 + (-4)^2) Distance = √((11 - x)^2 + 16)
Now, you have the distance between the two points (x - 4, 7) and (7, 3). If this distance equals 38.69, you can set up the equation:
√((11 - x)^2 + 16) = 38.69
Now, you can solve for x. Square both sides to eliminate the square root:
(11 - x)^2 + 16 = (38.69)^2
Expand and simplify:
(11 - x)^2 = (38.69)^2 - 16
Take the square root of both sides:
11 - x = ±√((38.69)^2 - 16)
Now, isolate x by adding or subtracting from both sides:
x = 11 ± √((38.69)^2 - 16)
Now, calculate the two possible values for x:
x1 = 11 + √((38.69)^2 - 16) x2 = 11 - √((38.69)^2 - 16)
These are the values of x that satisfy the equation for the given points (x - 4, 7) and (7, 3) with a distance of 38.69.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili