Установить вид кривой второго порядка заданной уравнением x^2+y^2=2x
Ответы на вопрос
(х-1)^2+y^2=1
это окружность радиуса 1 с центром в (1,0)
Для установления вида кривой второго порядка, заданной уравнением x^2 + y^2 = 2x, следует выполнить ряд шагов:
Перепишите уравнение, чтобы выразить y^2 в терминах x: y^2 = 2x - x^2.
Раскройте скобки и приведите подобные слагаемые: y^2 = -x^2 + 2x.
Теперь у вас есть уравнение кривой второго порядка в канонической форме: y^2 = -x^2 + 2x.
Сравните полученное уравнение с общим видом уравнения кривой второго порядка:
y^2 = 4ax,
где "a" - это некоторая константа.
В данном случае у вас уравнение кривой второго порядка имеет вид y^2 = -x^2 + 2x.
Сравнивая с общим видом, мы видим, что "a" равно -1, так как -x^2 + 2x = 4(-1)x.
Таким образом, уравнение задает параболу с фокусом в точке (a/4, 0), где "a" равно -1.
Для более точного анализа параболы и её положения относительно осей координат, можно преобразовать уравнение, чтобы выделить полный квадрат:
y^2 = -x^2 + 2x y^2 = -(x^2 - 2x).
Завершающим шагом будет завершить квадрат внутри скобок:
y^2 = -(x^2 - 2x + 1) + 1 y^2 = -(x - 1)^2 + 1.
Теперь мы видим, что парабола смещена вправо на 1 единицу и имеет вершину в точке (1, 1). Она открывается вниз, так как коэффициент при x^2 отрицателен (a = -1).
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
