
В классе 32 ученика из них 17 собирают марки, 12 значки. 8 учеников в классе не занимаются
каллекционированием. Сколько учеников класса собирают и марки и зночки

Ответы на вопрос





Давайте рассмотрим каждую категорию учеников по отдельности:
- Количество учеников, которые собирают марки: 17 учеников.
- Количество учеников, которые собирают значки: 12 учеников.
- Количество учеников, которые не занимаются коллекционированием: 8 учеников.
Теперь посчитаем количество учеников, которые собирают как марки, так и значки. Для этого применим принцип включения-исключения.
Включение-исключение: Количество учеников, собирающих и марки, и значки = (Количество собирающих марки) + (Количество собирающих значки) - (Количество собирающих и марки, и значки)
Количество собирающих и марки, и значки = 17 (собирают марки) + 12 (собирают значки) - X (собирают и марки, и значки).
X = 17 + 12 - (количество собирающих и марки, и значки).
Теперь найдем количество собирающих и марки, и значки:
X = 17 + 12 - X
Перенесем X на одну сторону уравнения:
2X = 17 + 12
2X = 29
X = 29 / 2
X = 14.5
Таким образом, 14.5 учеников собирают и марки, и значки. Однако, количество учеников не может быть дробным числом, так как ученики - это целые числа. Возможно, в тексте задачи допущена ошибка.
Если округлить вниз до ближайшего целого числа, получим:
X = 14 учеников.
Таким образом, 14 учеников класса собирают и марки, и значки.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili