
Продолжи ряд 3\5,6\22, 9/39,12/56


Ответы на вопрос




To find a pattern and continue the given sequence, let's observe the numerators and denominators separately:
Numerator sequence: 3, 6, 9, 12, ... Denominator sequence: 5, 22, 39, 56, ...
To find a relationship between the two sequences, let's look at the differences between consecutive terms:
Numerator differences: 6 - 3 = 3, 9 - 6 = 3, 12 - 9 = 3, ... Denominator differences: 22 - 5 = 17, 39 - 22 = 17, 56 - 39 = 17, ...
The numerator differences are constant (3), and the denominator differences are also constant (17). This suggests that there is a linear relationship between the numerators and denominators.
Now, to find the next terms in the sequence, we can add the constant differences to the last terms:
The last numerator is 12, and the constant difference is 3, so the next numerator will be 12 + 3 = 15. The last denominator is 56, and the constant difference is 17, so the next denominator will be 56 + 17 = 73.
Therefore, the next term in the sequence is 15/73.
The continued sequence is: 3/5, 6/22, 9/39, 12/56, 15/73, ...


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili