Продолжи ряд 3\5,6\22, 9/39,12/56
Ответы на вопрос
        
            To find a pattern and continue the given sequence, let's observe the numerators and denominators separately:
Numerator sequence: 3, 6, 9, 12, ... Denominator sequence: 5, 22, 39, 56, ...
To find a relationship between the two sequences, let's look at the differences between consecutive terms:
Numerator differences: 6 - 3 = 3, 9 - 6 = 3, 12 - 9 = 3, ... Denominator differences: 22 - 5 = 17, 39 - 22 = 17, 56 - 39 = 17, ...
The numerator differences are constant (3), and the denominator differences are also constant (17). This suggests that there is a linear relationship between the numerators and denominators.
Now, to find the next terms in the sequence, we can add the constant differences to the last terms:
The last numerator is 12, and the constant difference is 3, so the next numerator will be 12 + 3 = 15. The last denominator is 56, and the constant difference is 17, so the next denominator will be 56 + 17 = 73.
Therefore, the next term in the sequence is 15/73.
The continued sequence is: 3/5, 6/22, 9/39, 12/56, 15/73, ...
Похожие вопросы
			Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			