F(x)=4x+1/x+3 производные
Ответы на вопрос
f'(x)= ((4x+1)'(x+3)-(4x+1)(x+3)')/(x+3)²= (4(x+3)-(4x+1))/(x+3)²= (4x+12-4x-1)/(x+3)²= 11/(x+3)²
если 4x+(1/x) +3, то:
f'(x)= 4- (1/x²)
f '(x)= 4+(-1/x^2) +0 = 4-1/x^2
2)f(x)= (4x+1)/(x+3)
f '(x)= [ 4*(x+3)-(4x+1)*1 ] / (x+3)^2 = [4x+12-4x-1]/(x+3)^2 = 11/(x+3)^2
To find the derivatives of the function F(x) = 4x + 1/x + 3, we'll need to apply differentiation rules step by step. Since this function is a combination of two terms, one being a polynomial (4x) and the other involving a rational expression (1/x), we'll use the sum/difference rule and the power rule for differentiation.
The sum/difference rule states that the derivative of a sum (or difference) of functions is the sum (or difference) of their derivatives.
The power rule states that the derivative of x^n with respect to x is n*x^(n-1).
Let's calculate the derivatives step by step:
- Derivative of the first term (4x): The derivative of 4x with respect to x is simply 4 since the power of x is 1.
d/dx (4x) = 4
- Derivative of the second term (1/x): The derivative of 1/x with respect to x is -1/x^2.
d/dx (1/x) = -1/x^2
Now, we can rewrite the original function with the derivatives we've calculated:
F(x) = 4x + 1/x + 3
d/dx (F(x)) = d/dx (4x) + d/dx (1/x) + d/dx (3)
d/dx (F(x)) = 4 - 1/x^2 + 0
Finally, the derivative of the function F(x) is:
d/dx (F(x)) = 4 - 1/x^2
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
