
(3x-2)(3x+2)-7x (x+1)=2 (x-1)(x+1)


Ответы на вопрос

(3x-2)(3x+2)-7x(x+1) = 2(x-1)(x+1)
9x² - 4 - 7x² - 7x = 2(x²-1)
2x²- 7x - 4 = 2x² - 2
-7x = -2+4
-7x = 2
7x = -2
x = -2/7



To solve the given equation, we'll start by simplifying both sides and then finding the value(s) of 'x' that satisfy the equation.
Given equation: (3x-2)(3x+2) - 7x(x+1) = 2(x-1)(x+1)
Step 1: Expand the expressions on both sides of the equation:
(3x-2)(3x+2) = 9x^2 - 6x + 6x - 4 = 9x^2 - 4
- 7x(x+1) = -7x^2 - 7x
2(x-1)(x+1) = 2(x^2 + x - x - 1) = 2(x^2 - 1) = 2x^2 - 2
Now the equation becomes:
(9x^2 - 4) - (-7x^2 - 7x) = 2x^2 - 2
Step 2: Simplify and combine like terms:
9x^2 - 4 + 7x^2 + 7x = 2x^2 - 2
Combine like terms on the left side:
(9x^2 + 7x^2) + (7x) - 4 = 2x^2 - 2
16x^2 + 7x - 4 = 2x^2 - 2
Step 3: Move all the terms to one side of the equation to set it equal to zero:
16x^2 + 7x - 4 - 2x^2 + 2 = 0
Step 4: Combine like terms again:
14x^2 + 7x - 2 = 0
Now, to solve the quadratic equation, we can use the quadratic formula:
The quadratic formula is given by: x = (-b ± √(b^2 - 4ac)) / 2a
Where a = 14, b = 7, and c = -2.
Step 5: Plug in the values into the quadratic formula:
x = [ -7 ± √(7^2 - 4 * 14 * -2) ] / 2 * 14
Step 6: Simplify further:
x = [ -7 ± √(49 + 112) ] / 28
x = [ -7 ± √161 ] / 28
So the solutions for 'x' are:
- x = [ -7 + √161 ] / 28
- x = [ -7 - √161 ] / 28
These are the two values of 'x' that satisfy the original equation.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili