
НайтиS10.a1=-6;a4=2.4


Ответы на вопрос

-6+3d=2,4
3d=8,4
d=8,4/3=2,8
a10=a1+9d=-6+25,2=19,2
S10=((a1+a10)
/2)*10=((-6+19,2)/2)*10=
13,2*5=66



To find the 10th term (S10) in the arithmetic sequence, we first need to determine the common difference (d) between consecutive terms. In an arithmetic sequence, the difference between any two consecutive terms is constant.
We are given two terms of the sequence: a1 = -6 (the first term) a4 = 2.4 (the fourth term)
We can use the formula for the nth term (an) of an arithmetic sequence:
an = a1 + (n - 1) * d
where: an = the nth term a1 = the first term n = the term number d = the common difference
To find the common difference (d), we can use the information from a1 and a4:
a4 = a1 + (4 - 1) * d 2.4 = -6 + 3 * d
Now, solve for d:
2.4 = -6 + 3d 3d = 2.4 + 6 3d = 8.4 d = 8.4 / 3 d = 2.8
Now that we know the common difference (d = 2.8), we can find the 10th term (S10):
S10 = a1 + (10 - 1) * d S10 = -6 + 9 * 2.8 S10 = -6 + 25.2 S10 = 19.2
Therefore, the 10th term (S10) in the arithmetic sequence is 19.2.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili