
Это очень важно, хэлп ;-;. 1. Дополните: 3-2х = х + 6 ⇔ _х = _ (пропуски надо дополнить) 2. Даны
функции f, g: R → R, f(x) = 5-x/2 (это дробь, если что), g(x) = 5x+1 а) найдите нули функций f и g. 3. Найдите наибольшее целое решение неравенства : 2(х+1)<4-3(x-2).

Ответы на вопрос

Ответ:
Пошаговое объяснение:
1. Дополните:
3-2х = х + 6 ⇔ 3х =-3
2. Даны функции f, g: R → R,
f(x) = (5-x)/2 =0
х=5
g(x) = 5x+1 =0
х=-1/5
3. Найдите наибольшее целое решение неравенства :
2(х+1)<4-3(x-2).
2x+2<4-3x+6
5x<8
x<1,6
x=1



Решение:
1.
3-2х = х + 6 ⇔ 3х = -3
2.
f(x)=(5-x):2=0
5-x=0
x=5
g(x)=5x+1=0
5x=-1
x=-1/5
3.
2(x+1)<4-3(x-2)
2x+2<4-3x+6
2x+2<10-3x
2x+3x<10-2
5x<8
x<1,6
То есть:
Следовательно, наибольшее целое решение - 1



Конечно, помогу с этими математическими задачами! Давайте решим каждую из них по порядку:
- Дополните уравнение: 3-2х = х + 6 ⇔ _х = _
Чтобы найти значения для пропусков, преобразуем уравнение:
3 - 2х = х + 6
Сначала перенесём все х на одну сторону:
3 - 6 = х + 2х
-3 = 3х
Теперь разделим на 3, чтобы найти х:
х = -1
Таким образом, уравнение примет вид: 3 - 2х = х + 6 ⇔ х = -1
- Найдем нули функций f и g.
a) Нули функции f(x):
Чтобы найти нули функции f(x), нужно решить уравнение f(x) = 0:
5 - x/2 = 0
Для того чтобы избавиться от дроби, умножим уравнение на 2:
2 * (5 - x/2) = 2 * 0
10 - x = 0
Теперь выразим х:
x = 10
Таким образом, нуль функции f(x) равен 10.
b) Нули функции g(x):
Чтобы найти нули функции g(x), нужно решить уравнение g(x) = 0:
5x + 1 = 0
Выразим х:
5x = -1
x = -1/5
Таким образом, нуль функции g(x) равен -1/5.
- Найдите наибольшее целое решение неравенства: 2(х + 1) < 4 - 3(x - 2).
Для нахождения решения неравенства, сначала выполним операции и упростим:
2(х + 1) < 4 - 3(x - 2)
Раскроем скобки:
2х + 2 < 4 - 3х + 6
Теперь соберем все х в одну часть, а числа в другую:
2х + 3х < 4 + 6 - 2
5х < 8
Теперь разделим на 5 и запишем неравенство с учётом знака:
х < 8/5
Наибольшее целое решение неравенства будет наибольшее целое число, которое меньше 8/5. Это число равно 1.
Таким образом, наибольшее целое решение неравенства: х = 1.
Если у вас возникнут дополнительные вопросы, не стесняйтесь спрашивать!


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili