
Назовите известное вам положение центра тяжести некоторых геометрических фигур


Ответы на вопрос

Тема 1.5. Центр тяжести тела
§1. Центр тяжести однородного тела.
Рассмотрим твердое тело весом P и объемом V в системе координат Oxyz , где оси x и y связаны с поверхностью земли, а ось z направлена в зенит.
Если разбить тело на элементарные части объемом ∆Vi , то на каждую его часть будет действовать сила притяжения ∆Pi, направленная к центру Земли. Предположим, что размеры тела значительно меньше размеров Земли, тогда систему сил, приложенных к элементарным частям тела можно считать не сходящейся, а параллельной (рис.1), и к ней применимы все выводы предыдущей главы.
Рис.1. Параллельная система сил
Центром тяжести твердого тела называется центр параллельных сил тяжести элементарных частей этого тела.
При определении центра тяжести полезны несколько теорем.
1) Если однородное тело имеет плоскость симметрии, то центр тяжести его находится в этой
плоскости.
2) Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.
3) Если однородное тело имеет центр симметрии, то центр тяжести тела находится в этой точке.
§2. Способы определения координат центра тяжести.
1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.2), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.
Рис.2. Центр тяжести тел, имеющих ось симметрии
2. Разбиение. Тело разбивается на конечное число частей (рис.3), для каждой из которых положение центра тяжести и площадь известны.
Рис.3. Центр тяжести сплошной
сложной геометрической фигуры
- центр тяжести и площадь первой фигуры;
- центр тяжести и площадь второй фигуры;
- координата центра тяжести сплошной сложной геометрической фигуры по оси x;
- координата центра тяжести сплошной сложной геометрической фигуры по оси y;
3. Метод отрицательных площадей. Частный случай способа разбиения (рис.4). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S1 и площади вырезанной части S2 .
Рис.4. Центр тяжести сложной геометрической фигуры,
имеющей отверстие
- центр тяжести и площадь первой фигуры;
- центр тяжести и площадь второй фигуры;
- координата центра тяжести сложной геометрической фигуры по оси x;
- координата центра тяжести сложной геометрической фигуры по оси y;
§3. Координаты центра тяжести некоторых простых фигур.
1. Центр тяжести треугольника. Центр тяжести треугольника лежит в точке пересечения его медиан (рис.5). Координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин: xc =1/3(x1+x2+x3) ; yc =1/3(y1+y2+y3).
Рис.5. Центр тяжести треугольника
2. Центр тяжести прямоугольника. Центр тяжести прямоугольника лежит в точке пересечения его диагоналей (рис.6). Координаты центра тяжести прямоугольника рассчитываются по формулам: xc =b/2 ; yc =h/2.
Картинки по запросу центр тяжести простых геометрических фигур
Рис. 6. Центр тяжести треугольника
3. Центр тяжести полукруга. Центр тяжести полукруга лежит на оси симметрии (рис.7). Координаты центра тяжести полукруга рассчитываются по формулам: xc =D/2 ; yc =4R/3π.
Картинки по запросу центр тяжести простых геометрических фигур
Рис. 7. Центр тяжести полукруга
4. Центр тяжести круга. Центр тяжести круга лежит в центре (рис.8). Координаты центра тяжести круга рассчитываются по формулам: xc =R ; yc =R.
Картинки по запросу центр тяжести простых геометрических фигур



Конечно, вот положения центра тяжести некоторых известных геометрических фигур:
Треугольник: Центр тяжести (центр масс) треугольника называется центр инерции и обозначается как точка G. В обычном случае для равнобедренного треугольника и для равностороннего треугольника центр инерции совпадает с центром окружности, вписанной в треугольник.
Квадрат: Центр тяжести квадрата совпадает с точкой пересечения его диагоналей.
Прямоугольник: Центр тяжести прямоугольника лежит в точке пересечения его диагоналей.
Круг: Центр тяжести круга (или диска) симметричен относительно его центра, так как масса равномерно распределена по всему кругу.
Кольцо: Центр тяжести кольца (круг с вырезанным центром) находится на пересечении осей симметрии кольца.
Параллелограмм: Центр тяжести параллелограмма лежит на пересечении его диагоналей.
Треугольник Паскаля: Центр тяжести треугольника Паскаля также лежит на пересечении его диагоналей.
Тетраэдр: Центр тяжести тетраэдра (пирамиды с треугольным основанием) лежит на пересечении линий соединения вершин тетраэдра с центром основания.
Куб: Центр тяжести куба находится в точке пересечения диагоналей его граней.
Цилиндр: Центр тяжести цилиндра находится на его оси симметрии, в середине между его двумя плоскими гранями.
Это лишь некоторые примеры, и в общем случае центр тяжести каждой фигуры определяется исходя из равномерного распределения массы.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili