Почему при приближенных вычислениях погрешность может накапливаться
Ответы на вопрос
Ответ:1.4. Погрешности приближенных вычислений
Тема 1. Введение. Приближенные числа и действия над ними. Оценка точности вычислений
1.4. Погрешности приближенных вычислений
Понятие о погрешности приближения
Естественно, что приближенное и точное число всегда отличаются друг от друга. Иначе говоря, при приближении возникает некоторая погрешность приближения. Причем, в математике различают относительную и абсолютную погрешность.
Определение
Абсолютной погрешностью (или, просто, погрешностью) приближенного числа называют разность между этим числом и его точным значением (при этом из большего числа вычитается меньшее) .
Пример
При округлении числа 1284 до 1300 абсолютная погрешность составляет 1300-1284=16. А при округлении до 1280 абсолютная погрешность составляет 1280-1284 = 4.
Определение
Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому (точному) числу.
Пример
При округлении числа 197 до 200 абсолютная погрешность составляет 200-197 = 3. Относительная погрешность равна 3/197 ≈ 0,01523 или приближенно 3/200 ≈ 1,5%.
В большинстве случаев невозможно узнать точное значение приближенного числа, а значит и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.
Например, продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая – 50 г. Взвешивание дало 3600 г. Это число – приближенное. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превышает 50/3600 ≈ 1,4%.
Определение
Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей) , называется предельной абсолютной погрешностью.
Определение
Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей) называется предельной относительной погрешностью.
Предельная абсолютная погрешность обозначается греческой буквой Δ – "дельта". А предельная относительная погрешность – греческой буквой δ ("дельта малая"). Если приближенное число обозначить буквой α, то δ = Δ/ α.
В примере с арбузом за предельную абсолютную погрешность можно взять Δ = 50г, а за предельную относительную – δ = 1,4%.
Погрешность действий над приближенными числами
Предельная абсолютная погрешность суммы (разности) не превышает суммы предельных абсолютных погрешностей отдельных слагаемых.
Пример 1
Пусть даны точные числа и их приближенные значения: 2,463 ≈ 2,46 и 3,208 ≈ 3,21.
Их абсолютные погрешности приближений соответственно равны: 2,463-2,46 = 0,003 и 3,21-3,208 = 0,002.
Рассмотрим сумму приближенных чисел – 2,46+3,21 = 5,67.
Предельная погрешность суммы равна 0,003+0,002 = 0,005.
Если проверить, то получится, что точная сумма будет 2,463+3,208 = 5,671.
Следовательно, точно вычисленная погрешность приближения будет: 5,671-5,67 = 0,001. Действительно 0,001 ≤ 0,005.
Предельная относительная погрешность произведения приближенно равна сумме предельных относительных погрешностей сомножителей.
Пример 2
Пусть перемножаются приближенные числа 50 и 20 и пусть предельная относительная погрешность первого сомножителя равна 0,4%, а второго 0,5%. тогда предельная относительная погрешность произведения 50*20 = 1000 приближенно равна 0,9%.
Предельная относительная погрешность частного приближенно равна сумме предельных относительных погрешностей делимого и делителя.
Таким образом, легко заметить, что при приближенных вычислениях погрешность может накапливаться!
Пошаговое объяснение:
При приближенных вычислениях погрешность может накапливаться из-за неизбежных ограничений точности представления чисел в компьютерах и ошибок округления. Вот некоторые основные причины, почему погрешность может накапливаться:
Округление: Компьютеры представляют числа в формате с плавающей точкой, который имеет ограниченную точность. При выполнении арифметических операций, таких как сложение, вычитание, умножение и деление, результат может быть округлен до ближайшего числа с ограниченным числом значащих цифр. Это округление может приводить к небольшой погрешности.
Потеря значащих цифр: При выполнении вычислений с числами, имеющими разную точность, точные цифры могут быть потеряны из-за недостаточной точности менее точного числа. Например, при вычитании очень близких чисел, младшие разряды результата могут быть недостоверными из-за потери значимости.
Аккумуляция ошибок: Если серия вычислений выполняется последовательно, погрешности каждого шага могут накапливаться и увеличиваться с каждым следующим шагом. Даже небольшие начальные погрешности могут значительно влиять на конечный результат.
Условия задачи: Некоторые вычислительные задачи, такие как вычисление численных интегралов или решение систем линейных уравнений, могут быть чувствительны к погрешностям и неустойчивым приближенным методам. Это может приводить к большей накопленной погрешности.
Алгоритмические ошибки: Ошибки могут возникать также из-за некорректно реализованных алгоритмов или неправильного выбора численных методов. Некорректные алгоритмы могут вызывать дополнительные ошибки, которые могут накапливаться в процессе вычислений.
Чтобы уменьшить накопление погрешности, можно использовать более точные методы вычислений, контролировать и оценивать погрешности, а также применять методы, такие как уточнение результатов или использование высокоточной арифметики при необходимости.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
