
Решить показательную систему уравнений 64^(х-3у)=8 и 12х+у=2 (1/3)^(2x-y)=27 и 5^(3x-y)=1/25


Ответы на вопрос

Ответ:
1) х=13/74 у=-4/37
2) х=1 у=5
Пошаговое объяснение:
1) Первое уравнение равносильно :х-3у=1/2 , второе 12х+у=2 умножаем на 3 36х+3у=6 и прибавляем к предыдущему :
37х=6,5 х=65/370 х=13/74 у=2-156/74=-8/74
2) 2х-у=-3 3х-у=-2
Вычтем из второго первое
х=1
у=5



Для решения системы уравнений, мы будем использовать свойства степеней и алгебраические методы. Давайте рассмотрим каждое уравнение отдельно.
- 64^(х-3у) = 8
Прежде чем продолжить, давайте представим 8 как степень 2: 8 = 2^3
Теперь мы можем записать уравнение так: 64^(х-3у) = 2^3
Так как 64 = 2^6, заменим это в уравнении: (2^6)^(х-3у) = 2^3
Применим свойства степеней: умножение степеней с одним и тем же основанием равно сложению показателей: 2^(6*(х-3у)) = 2^3
Теперь уравнения равны, значит, показатели тоже равны: 6*(х-3у) = 3
Далее, решим уравнение относительно одной переменной: 6х - 18у = 3 6х = 3 + 18у х = (3 + 18у)/6 х = у + 0.5у х = 1.5у
Таким образом, мы нашли выражение для х через у: х = 1.5у.
- 12х + у = 2
Теперь мы можем заменить х во втором уравнении на выражение, которое мы нашли ранее: 12 * (1.5у) + у = 2
Решим уравнение: 18у + у = 2 19у = 2 у = 2/19
Теперь, найдем значение х, используя уравнение х = 1.5у: х = 1.5 * (2/19) х = 3/19
Таким образом, решение системы уравнений: х = 3/19 у = 2/19


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili