
Вопрос задан 15.07.2018 в 16:19.
Предмет Математика.
Спрашивает Савин Саша.
в школьной математической олимпиаде принимали участие 9 учеников шестого класса. За каждую решенную
задачу ученик получал 2 очка, а за каждую нерешенную задачу с него списывали 1 очко. Всего было предложено 10 задач. Докажите, что среди участников олимпиады из шестого класса было по крайней мере, два ученика, набравшие одинаковое число очков. (Считается, что ученики,набравшие больше штрафных очков, чем зачетных набрали 0 очков )

Ответы на вопрос

Отвечает Мирзалиева Гюльшан.
Можно было прлучить очков:
20
17
14
11
8
5
2
0
Вариантов 8, а участников больше.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili