Вопрос задан 15.07.2018 в 15:57. Предмет Математика. Спрашивает Чуева Яна.

Какое максимальное число точек пересечения могут иметь 8 окружностей? Исключить случай полного

совпадения всех восьми окружностей.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тихая Нина.

При некоторых условиях БЕСКОНЕЧНОЕ количество точек пересечения. Ну например, если две из этих окружностей полностью совпадают, то они пересекаются в бесконечном количестве точек. А если ВСЕ совпадают, то 8 бесконечностей, ну примерно :))))) Думаю, что в оригинале вопроса было еще условие. РАЗНЫХ окружностей. Если так, то каждая окружность может пересекать другую два раза максимум. Соответственно две окружности две точки пересечения, три окружности 6 точек (старые две и четыре новые) , 4 окружности: 6 "старых" и 6 "новых", ну что бы не мудрить с написанием универсальной формулы со степенью двойки, проще так:
количество окружностей, количество возможных точек пересения "старых", количество "новых"
1 окружность 0 точек пересечения было 0 точек мересечения добавилось добавилось =02 окружности 0 точек было 2 добавилось =23 2 4 = 64 6 6 =125 12 8 =206 20 10 = 307 30 12 =428 42 14 = 56
Итого 56
Нужна со степенью двойки универсальная формула для любого количества окружностей, или сама? 

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос