
Какое максимальное число точек пересечения могут иметь 8 окружностей? Исключить случай полного
совпадения всех восьми окружностей.

Ответы на вопрос

При некоторых условиях БЕСКОНЕЧНОЕ количество точек пересечения. Ну например, если две из этих окружностей полностью совпадают, то они пересекаются в бесконечном количестве точек. А если ВСЕ совпадают, то 8 бесконечностей, ну примерно :))))) Думаю, что в оригинале вопроса было еще условие. РАЗНЫХ окружностей. Если так, то каждая окружность может пересекать другую два раза максимум. Соответственно две окружности две точки пересечения, три окружности 6 точек (старые две и четыре новые) , 4 окружности: 6 "старых" и 6 "новых", ну что бы не мудрить с написанием универсальной формулы со степенью двойки, проще так:
количество окружностей, количество возможных точек пересения "старых", количество "новых"
1 окружность 0 точек пересечения было 0 точек мересечения добавилось добавилось =02 окружности 0 точек было 2 добавилось =23 2 4 = 64 6 6 =125 12 8 =206 20 10 = 307 30 12 =428 42 14 = 56
Итого 56
Нужна со степенью двойки универсальная формула для любого количества окружностей, или сама?


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili