
Закон движения точки по прямой задаётся формулой s(t)=3t2, где t — время (в секундах), s(t) —
отклонение точки в момент времени t (в метрах) от начального положения. Найди скорость и ускорение в момент времени t, если: t=1,9 с.

Ответы на вопрос

При прямолинейном движении скорость численно равна
. Следовательно,
м/с
При прямолинейном движении ускорение численно равно
- равноускоренное движение. Следовательно,
м/с²
Ответ: 11,4 м/с; 6 м/с²



Для нахождения скорости и ускорения в момент времени t воспользуемся формулами дифференцирования.
Первоначально найдем производную функции s(t), чтобы найти скорость v(t): v(t) = ds(t)/dt
Для этого возьмем производную функции s(t)=3t^2 по переменной t: v(t) = d(3t^2)/dt = 6t
Теперь найдем значение скорости в момент времени t=1,9 с: v(1.9) = 6 * 1.9 = 11.4 м/с
Теперь найдем производную скорости v(t), чтобы найти ускорение a(t): a(t) = dv(t)/dt
Возьмем производную скорости v(t) = 6t по переменной t: a(t) = d(6t)/dt = 6
Таким образом, ускорение в любой момент времени t будет равно 6 м/с^2.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili