Вопрос задан 14.07.2023 в 23:55. Предмет Математика. Спрашивает Габрусевич Саша.

Упрастить cos⁴+sin² cos²+sin² помогите пожалуйста

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кулжабай Нурислам.

Пошаговое объяснение:

1.Найдем sin2a:

(sina+cosa)^2=1/4

(sina)^2+2sinacosa+(cosa)^2=1/4

1+2sinacosa=1/4

2sinacosa=-3/4

sin2a=-3/4

2.Найдем cos2a :

sqrt(1-(sin2a)^2)=sqrt(1-9/16)=sqrt(7/16)=sqrt(7)/4

3.Найдем значение выражения 2sin 2a + 3cos 2a + 7:

2*(-3/4)+3*sqrt(7)/4+7=5,5+3*sqrt(7)/4

Ответ:5,5+3*sqrt(7)/4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для упрощения данного выражения можно использовать тригонометрическую формулу двойного угла для косинуса и формулу суммы квадратов синуса и косинуса.

cos² + sin² = 1 (тождество Пифагора)

Тогда выражение можно переписать следующим образом:

cos⁴ + sin² cos² + sin² = (cos²)² + sin² cos² + sin² = (cos²)² + sin² (cos² + 1)

Затем используем формулу двойного угла для косинуса:

cos(2θ) = 2cos²(θ) - 1

cos²(θ) = (cos(2θ) + 1) / 2

Подставим эту формулу в выражение:

(cos²)² + sin² (cos² + 1) = ((cos(2θ) + 1) / 2)² + sin² ((cos(2θ) + 1) / 2 + 1)

Упростим это выражение:

((cos(2θ) + 1) / 2)² + sin² ((cos(2θ) + 1) / 2 + 1) = (cos(2θ) + 1)² / 4 + sin² ((cos(2θ) + 3) / 2)

Таким образом, мы упростили исходное выражение.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос