
Sin3xcosx-cos3xsinx≤0,5


Ответы на вопрос

Пошаговое объяснение:
Ответ и решение в файле. Честно говоря, не уверенна в решении




To solve the inequality sin(3x)cos(x) - cos(3x)sin(x) ≤ 0.5, we can simplify the left-hand side and then find the interval(s) where the inequality holds true.
Step 1: Use trigonometric identities to simplify the left-hand side: sin(3x)cos(x) - cos(3x)sin(x) = sin(3x - x) = sin(2x).
So, the inequality becomes sin(2x) ≤ 0.5.
Step 2: Find the interval(s) where the inequality holds true: To solve sin(2x) ≤ 0.5, we'll consider the unit circle and the values of sin(2x) in each quadrant.
In the first and fourth quadrants (0 ≤ 2x ≤ π), sin(2x) is positive, and it reaches a maximum of 1 at π/2. Therefore, sin(2x) ≤ 0.5 in the first and fourth quadrants when 0 ≤ 2x ≤ π/6.
In the second and third quadrants (π ≤ 2x ≤ 2π), sin(2x) is negative, and it reaches a minimum of -1 at 3π/2. Therefore, sin(2x) ≤ 0.5 in the second and third quadrants when 11π/6 ≤ 2x ≤ 2π.
So, the solution to the inequality is: 0 ≤ 2x ≤ π/6 (for the first and fourth quadrants) or 11π/6 ≤ 2x ≤ 2π (for the second and third quadrants).
Finally, divide the interval by 2 to find the solution for x: 0 ≤ x ≤ π/12 (for the first and fourth quadrants) or 11π/12 ≤ x ≤ π (for the second and third quadrants).
Therefore, the solution to the inequality sin(3x)cos(x) - cos(3x)sin(x) ≤ 0.5 is: 0 ≤ x ≤ π/12 or 11π/12 ≤ x ≤ π.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili