
2(х-2)(х+2)=(х-4)(х+4)+(х-3)(х+3)+х


Ответы на вопрос

Ответ:
2(x²-4)=(x²-16)+(x²-9)+x
2x²-8=x²-16+x²-9+x
2x²-8=2x²-25+x
-8=-25+x
-x=-25+8
-x=-17
X=17



Х=17
Всё.



Let's simplify the given expression step by step:
- Expand both sides of the equation:
Left-hand side (LHS): 2(x - 2)(x + 2) = 2(x^2 + 2x - 2x - 4) = 2(x^2 - 4)
Right-hand side (RHS): (x - 4)(x + 4) + (x - 3)(x + 3) + x = (x^2 + 4x - 4x - 16) + (x^2 + 3x - 3x - 9) + x = x^2 - 25 + x
- Now, our equation becomes:
2(x^2 - 4) = x^2 - 25 + x
- Distribute 2 on the left-hand side:
2x^2 - 8 = x^2 - 25 + x
- Move all terms to one side of the equation:
2x^2 - x^2 - x - 8 + 25 = 0
- Simplify:
x^2 - x + 17 = 0
This quadratic equation is not factorable easily, so we can use the quadratic formula to find its roots:
The quadratic formula is given by:
x = (-b ± √(b^2 - 4ac)) / 2a
where a = 1, b = -1, and c = 17.
- Calculate the discriminant (Δ):
Δ = b^2 - 4ac Δ = (-1)^2 - 4 * 1 * 17 Δ = 1 - 68 Δ = -67
Since the discriminant is negative (Δ < 0), the quadratic equation has two complex roots.
- Calculate the roots using the quadratic formula:
x = [ -(-1) ± √(-67) ] / 2*1 x = [ 1 ± √67i ] / 2
So, the two complex roots of the equation are:
x = (1 + √67i) / 2 and x = (1 - √67i) / 2
Note: The original equation provided seems to contain a mistake or might not be complete. If you have any additional information or corrections, please let me know, and I'll be happy to assist further.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili