Вопрос задан 12.07.2023 в 15:46. Предмет Математика. Спрашивает Лагутин Вова.

13х-5=3х+15 5y-12-(2y+4)=5 x\2+27=-2x\5 6x-2(x+0.6)=-3целых 1\5

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Туранова Лиза.

Ответ:

2; 7;-30;0.5;

Пошаговое объяснение:

1)13х-3х=15+5;

10х=20

х=2

2) 5у-12-2у-4-5=0

3у-21=0

3у=21

у=7

3) 10(х\2+27)=10*-2х\5

5х+10*27=-2*2х

5х+270=-4х

5х+4х=-270

9х=-270

х=-30

4)6х-2х-1.2=-3.2

4х=2

х=0.5

0 0
Отвечает Кузнецова Лера.

Ответ:

1) 13х - 5 = 3х + 15

13х - 3х = 15 + 5

10х = 20

х = 20/10

х = 2

2) 5у - 12 - (2у + 4) = 5

5у - 12 - 2у - 4 = 5

3у = 5 + 12 +4

3у = 21

у = 21/3

у = 7

3) х/2 + 27 = -2х /5 (*10)

5х + 270 = -4х

5х + 4х = -270

9х = -270

х = -270/9

х = -30

4) 6х - 2 (х + 0,6) = -3, 2

6х - 2х - 1,2 = -3,2

4х = -3,2 + 1,2

4х = -2

х = - 0,5

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve each of these equations, we'll perform the necessary steps one by one:

  1. 13x - 5 = 3x + 15

First, let's isolate the variable "x" on one side of the equation. To do this, we'll move the "3x" term to the left side and the constant terms to the right side.

Subtract 3x from both sides: 13x - 3x - 5 = 3x - 3x + 15

Simplify the equation: 10x - 5 = 15

Now, let's get rid of the constant term on the left side by adding 5 to both sides: 10x - 5 + 5 = 15 + 5

Simplify the equation further: 10x = 20

Finally, to find the value of "x," divide both sides by 10: x = 20 / 10 x = 2

So the solution to the first equation is x = 2.

  1. 5y - 12 - (2y + 4) = 5

First, perform the operations within the parentheses:

5y - 12 - 2y - 4 = 5y - 2y - 16

Combine like terms:

3y - 16 = 3y - 16

The equation simplifies to 0 = 0. This means that the equation is an identity and is true for all values of y. So, there are infinitely many solutions for this equation.

  1. (x/2) + 27 = -2(x/5)

To solve this equation, let's first clear the fractions by multiplying the whole equation by 10 (the least common multiple of 2 and 5):

10 * [(x/2) + 27] = 10 * [-2(x/5)]

Simplify:

5x + 270 = -4x

Now, let's isolate the variable "x" on one side of the equation:

Add 4x to both sides:

5x + 4x + 270 = -4x + 4x

Combine like terms:

9x + 270 = 0

Next, subtract 270 from both sides:

9x + 270 - 270 = 0 - 270

Simplify:

9x = -270

Finally, divide both sides by 9 to find the value of "x":

x = -270 / 9 x = -30

So the solution to the third equation is x = -30.

  1. 6x - 2(x + 0.6) = -3 + 1/5

First, distribute the -2 through the parentheses:

6x - 2x - 1.2 = -3 + 1/5

Combine like terms:

4x - 1.2 = -3 + 1/5

Next, let's get rid of the decimal on the right side by finding a common denominator, which is 5:

4x - 1.2 = -15/5 + 1/5

Combine the fractions on the right side:

4x - 1.2 = (-15 + 1) / 5 4x - 1.2 = -14 / 5

Now, let's isolate the variable "x" by adding 1.2 to both sides:

4x - 1.2 + 1.2 = -14 / 5 + 1.2

Combine the fractions on the right side:

4x = (-14 + 1.2 * 5) / 5 4x = (-14 + 6) / 5 4x = -8 / 5

Finally, divide both sides by 4 to find the value of "x":

x = (-8 / 5) / 4 x = -8 / 5 * 1/4 x = -2 / 5

So the solution to the fourth equation is x = -2/5.

To summarize the solutions:

  1. x = 2
  2. Infinitely many solutions
  3. x = -30
  4. x = -2/5
0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос