Вопрос задан 10.07.2023 в 11:12. Предмет Математика. Спрашивает Мирная Виктория.

В шкафу две полки с книгами. Всего 30 книг. Если бы с первой полки переложили на вторую 2 книги, то

на первой полке стало бы вдвое больше книг, чем на второй. Сколько книг было на каждой полке? УРАВНЕНИЕМ
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Соломина Арина.

Пусть х книг было на первой полке, тогда (30 - х) книг было на второй. Уравнение:

х - 2 = (30 - х + 2) · 2

х - 2 = (32 - х) · 2

х - 2 = 64 - 2х

х + 2х = 64 + 2

3х = 66

х = 66 : 3

х = 22 (книги) - было на первой полке

30 - 22 = 8 (книг) - было на второй полке

Ответ: 22 книги и 8 книг.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть x - количество книг на первой полке, y - количество книг на второй полке.

У нас есть два уравнения:

  1. x + y = 30 (общее количество книг на обеих полках)
  2. x - 2 = 2(y + 2) (если бы с первой полки переложили на вторую 2 книги, то на первой полке стало бы вдвое больше книг, чем на второй)

Решим эту систему уравнений:

Из уравнения 1 выразим x: x = 30 - y

Подставим x в уравнение 2:

30 - y - 2 = 2(y + 2) 28 - y = 2y + 4 28 - 4 = 2y + y 24 = 3y y = 8

Теперь найдем x, используя значение y:

x = 30 - y x = 30 - 8 x = 22

Итак, на первой полке было 22 книги, а на второй полке было 8 книг.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос