Вопрос задан 10.07.2023 в 00:48. Предмет Математика. Спрашивает Заболоцкий Слава.

Периметр треугольника ABC равен 15 см. Сторона ВС больше стороны АВ на 2 см, а сторона AB меньше

сто-роны АС на 1 см. Найдите стороны треугольника.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жарков Илья.

Ответ:

P (abc) = 15

AB = x см

BC = х+2 см

AC = x+1 см

 

P = a+b+c

15=x+(x+2)+(x+1)

15=3x+3

3x=12

x=4

 

BC= 4 + 2 = 6

AC= 4 + 1 = 5

 

Ответ. стороны равны 4,5,6 см

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Обозначим стороны треугольника как AB, BC и AC. По условию задачи у нас есть следующие информации:

  1. AB + BC + AC = 15 (периметр треугольника равен 15 см).
  2. BC = AB + 2 (сторона BC больше стороны AB на 2 см).
  3. AC = AB - 1 (сторона AC меньше стороны AB на 1 см).

Теперь давайте подставим выражения для BC и AC в уравнение периметра:

AB + (AB + 2) + (AB - 1) = 15.

Сократим подобные слагаемые:

3AB + 1 = 15.

Теперь выразим AB:

3AB = 14, AB = 14 / 3, AB ≈ 4.67.

Теперь, используя выражения для BC и AC, найдем их значения:

BC = AB + 2 ≈ 6.67, AC = AB - 1 ≈ 3.67.

Таким образом, стороны треугольника примерно равны: AB ≈ 4.67 см, BC ≈ 6.67 см, AC ≈ 3.67 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос