Вопрос задан 08.07.2023 в 02:59. Предмет Математика. Спрашивает Беляева Елизавета.

Постройте в одной системе координат графики функций y=2x-5;y=3 и найти точки их пересечения

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Галкина Эвелина.

Ответ:

2х-5=3

x=4

(x,y)= (4,3)

3=2×4-5

3=3

3=3

3=3

ответ:(х,у)=(4,3)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно! Я могу помочь вам с этим. Давайте построим графики обеих функций на одной системе координат и найдем точки их пересечения.

Функции:

  1. y = 2x - 5
  2. y = 3

Сначала нарисуем график функции y = 2x - 5:

Для этого нам понадобится построить несколько точек и провести прямую линию через них.

Когда x = 0, y = 2 * 0 - 5 = -5. Когда x = 3, y = 2 * 3 - 5 = 1.

Таким образом, у нас есть две точки: (0, -5) и (3, 1). Мы можем провести линию через эти точки.

Теперь нарисуем график функции y = 3:

Эта функция представляет собой горизонтальную линию на уровне y = 3. Таким образом, она будет пересекаться с графиком первой функции в точке, где y = 3.

Теперь давайте построим оба графика на одной системе координат:

markdown
| 5 | x | / | / | / | / 0 |----------------- | / |/ -5 |----------------- | |__________________ 0 1 2 3 4

График первой функции (y = 2x - 5) будет представлять собой наклонную линию, проходящую через точки (0, -5) и (3, 1). График второй функции (y = 3) будет горизонтальной линией на уровне y = 3.

Точка пересечения обоих графиков будет точкой, где графики пересекаются по вертикали. В данном случае, это будет точка (3, 3), так как обе функции пересекаются в этой точке.

Итак, точка пересечения данных функций: (3, 3).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос