Вопрос задан 06.07.2023 в 11:24. Предмет Математика. Спрашивает Тузова Виктория.

Помогите построить график функции у=4x^6-6х^4+3 Пожалуйста!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ковалькова Катюша.

Ответ:

y=3, x Є R

Пошаговое объяснение:

y=4x*6-6x*4+3

y=3

y=3, x Є R

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу вам построить график функции y = 4x^6 - 6x^4 + 3. Для этого мы сначала определим основные характеристики функции, а затем построим график.

  1. Найдем экстремумы функции: Для этого найдем производную функции и приравняем ее к нулю: y = 4x^6 - 6x^4 + 3 y' = 24x^5 - 24x^3

Установим y' равным нулю и найдем соответствующие значения x: 24x^5 - 24x^3 = 0 24x^3(x^2 - 1) = 0 x = 0 (кратности 3) или x = ±1

  1. Определим поведение функции в окрестности найденных точек:
  • При x = 0, функция меняет направление из убывания в возрастание (локальный минимум).
  • При x = ±1, функция меняет направление из возрастания в убывание (локальный максимум).
  1. Определим поведение функции на бесконечностях:
  • Коэффициент при самой высокой степени x^6 положителен, поэтому при x → ±∞ функция также будет стремиться к плюс бесконечности.

Теперь мы готовы построить график:

lua
^ y | | + | + + + | + + + | + + | + | + |+ +--------------------------------> -1 0 1 x

На графике видно, что у функции есть локальный минимум в точке (0, 3) и локальные максимумы в точках (-1, 1) и (1, 1). Функция стремится к плюс бесконечности как при x → +∞, так и при x → -∞.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос