Вопрос задан 06.07.2023 в 02:08. Предмет Математика. Спрашивает Крашенинников Тимур.

X2-x+6>0(x-5)(x+5)<0​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лапшин Александр.

Ответ:

х=1

1×2-1+6=7

7>0

(1-5)(1+5)=-4×6=-24

-24<0

0 0
Отвечает Бухонов Миша.

1)X^2 - x - 6 = 0

D = 1 + 4*6 = 25

x1 = ( 1 + 5)/2 = 6/2 = 3;

x2 = ( 1 - 5)/2 = - 4/2 = - 2;

2) 2/5 x=0

0,01x=25

0×x=0

X-1/20

X-5/x²-25=0

5+x²=0

(x+3)(x-7)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequality x2x+6>0x^2 - x + 6 > 0 and the inequality (x5)(x+5)<0(x - 5)(x + 5) < 0, we can break down the problem into two separate parts.

  1. Solving x2x+6>0x^2 - x + 6 > 0:

Let's start by finding the roots of the quadratic equation x2x+6=0x^2 - x + 6 = 0. The roots can be found using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

For the equation x2x+6=0x^2 - x + 6 = 0, the coefficients are a=1a = 1, b=1b = -1, and c=6c = 6. Plugging these values into the quadratic formula:

x=1±141621x = \frac{1 \pm \sqrt{1 - 4 \cdot 1 \cdot 6}}{2 \cdot 1}

Simplifying the expression under the square root:

x=1±232x = \frac{1 \pm \sqrt{-23}}{2}

Since the expression under the square root is negative, this quadratic equation has no real roots. Therefore, the quadratic x2x+6x^2 - x + 6 is always positive (or zero) for all real values of xx.

  1. Solving (x5)(x+5)<0(x - 5)(x + 5) < 0:

We have a product of two linear factors here, (x5)(x - 5) and (x+5)(x + 5), and we want their product to be less than zero. To do this, we need to consider the sign of each factor separately.

  • When x<5x < -5: Both (x5)(x - 5) and (x+5)(x + 5) are negative, so their product (x5)(x+5)(x - 5)(x + 5) will be positive.

  • When 5<x<5-5 < x < 5: (x5)(x - 5) is negative and (x+5)(x + 5) is positive, so their product will be negative.

  • When x>5x > 5: Both (x5)(x - 5) and (x+5)(x + 5) are positive, so their product will be positive.

So, the solution to (x5)(x+5)<0(x - 5)(x + 5) < 0 is the interval 5<x<5-5 < x < 5.

To summarize:

  1. The inequality x2x+6>0x^2 - x + 6 > 0 is satisfied for all real values of xx.
  2. The inequality (x5)(x+5)<0(x - 5)(x + 5) < 0 is satisfied when 5<x<5-5 < x < 5.

Keep in mind that these solutions are for real numbers xx. If you're dealing with complex numbers, the analysis might be different.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос