Вопрос задан 05.07.2023 в 21:12. Предмет Математика. Спрашивает Катин Кирилл.

Знайти абсциси точок перетину параболи y=x^2-6x-7 з віссю x

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жучкова Юлия.

х²-6х-7=0

По Виету х=7;х=-1

Точки пересечения (7;0);(-1;0)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження абсцис перетину параболи з віссю x потрібно знайти значення x, при якому y (функція параболи) дорівнює нулю. Тобто, ми шукаємо корені рівняння x^2 - 6x - 7 = 0.

Це квадратне рівняння можна розв'язати за допомогою квадратного кореня або факторизації. Однак, якщо ви хочете отримати наближені десяткові значення абсцис, можна скористатися формулою дискримінанту для квадратного рівняння: x = (-b ± √D) / 2a, де a, b і c - коефіцієнти квадратного рівняння ax^2 + bx + c = 0, а D - дискримінант, який рівний b^2 - 4ac.

У вашому випадку: a = 1, b = -6, c = -7.

Дискримінант D = (-6)^2 - 4 * 1 * (-7) = 36 + 28 = 64.

Тепер, застосуємо формулу для знаходження коренів: x = (-(-6) ± √64) / (2 * 1) = (6 ± 8) / 2.

Отже, отримуємо два можливі значення x:

  1. x = (6 + 8) / 2 = 14 / 2 = 7.
  2. x = (6 - 8) / 2 = -2 / 2 = -1.

Отже, абсциси точок перетину параболи з віссю x дорівнюють 7 та -1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос