
Вопрос задан 05.07.2023 в 14:59.
Предмет Математика.
Спрашивает Бруг Алексей.
-2Cos4x-1=0 решите уравнение


Ответы на вопрос

Отвечает Андреев Игорь.
Ответ:
Cos4x = -1/2
4x =(-1)ⁿarccos(-1/2)+πn, n∈Z
x= (-1)ⁿπ/6+πn/4, n∈Z
Пошаговое объяснение:



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения уравнения -2cos(4x) - 1 = 0, мы сначала приведём его к виду cos(4x) = -1/2. Затем найдём все значения x, удовлетворяющие этому уравнению.
Используем обратную функцию косинуса, чтобы найти значения углов, удовлетворяющих уравнению:
4x = arccos(-1/2) + 2πn, где n - целое число.
arccos(-1/2) = 2π/3
Тогда:
4x = 2π/3 + 2πn
x = (2π/3 + 2πn)/4, где n - целое число.
Таким образом, общее решение уравнения -2cos(4x) - 1 = 0:
x = (2π/3 + 2πn)/4, где n - целое число.


Похожие вопросы

Математика 35
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili