Вопрос задан 05.07.2023 в 06:22. Предмет Математика. Спрашивает Локшина Дарья.

вероятность появление событие А в 30 независимые испыьание , проводимых по схеме бернулли, равна

0,8. тогда дисперсии числа появлений этого события равна.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Марукова Синя.

Ответ:

4.8

Пошаговое объяснение:

Дисперсия  для схемы Бернулли вычисляется по формуле n*p*(1-p), где n - количество испытаний, p   - вероятность появления события.

D(X)=30*0.8*(1-0.8)=4.8

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для случайной величины, представляющей собой количество успехов в серии независимых испытаний по схеме Бернулли, дисперсия (Var) вычисляется по следующей формуле:

Var(X)=np(1p)Var(X) = n \cdot p \cdot (1 - p)

Где:

  • nn - количество испытаний (в данном случае 30)
  • pp - вероятность появления события AA в одном испытании (в данном случае 0,8)

Подставив значения в формулу:

Var(X)=300,8(10,8)=300,80,2=4,8Var(X) = 30 \cdot 0,8 \cdot (1 - 0,8) = 30 \cdot 0,8 \cdot 0,2 = 4,8

Итак, дисперсия числа появлений события AA в 30 независимых испытаниях равна 4,8.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос