
Вася сокращает дроби по-своему: зачеркивает одинаковые цифры в числителе и знаменателе дроби, даже
если это нули. Иногда у Васи получаются правильные ответы: Сколько существует дробей с двузначными числителем и знаменателем, которые Вася может правильно "сократить"?

Ответы на вопрос

Попытаемся записать в общем виде двузначные числители и знаменатели и попытаться сократить их.
Да. оговорюсь. что касаемо нулей. это дроби вида 10/10; ...50/10; 90/10; т.е. их посчитать легко. Вася вычеркивает нули, в таких дробях, их всего девять.
разберем теперь числа вида ав/св, ав запишем как (10а+в), вс=(10в+с);
ва/вс; (10в+а)с=(10в+с)а, откуда 10вс+ас=10ва+са, вс=ва, в-цифра десятков, она не нуль. поэтому с=а, значит, это числа вида 11/11; 22/22; ....99/99. их тоже девять.
если теперь взять случай ав/св; (10а+в)*с=(10с+в)*а; получим а=с, но этот случай уже разобран выше.
возьмем теперь ва/св; (10в+а)*с=(10с+в)*а; 10вс+ас=10ас+ав; 10вс+ас=10ас+ав; 10вс-ав=9ас; в(10с-а)=9ас; здесь либо в кратно 9, но это только 9, либо 10с-а кратно 9, если в=9, то 10с-а=9ас; с(10-а)=а, если а=1, то с=1/9, с -натуральная цифра, поэтому не подходит. можно перебрать все случаи, т.е. если а=2, ....4 не подходит. если а=5, то с=1; получаем 95/19; а=6,7 не подходит, а=8, тогда с=4, получаем 98/49, если а=9, то с=9, получаем 99/99, это было раньше рассмотрено.
Если же скобка 10с-а кратна 9, то это возможно при с=1, а=1, тогда в=1, 11/11 было , ... долог путь, наверное, надо взять или правильные, или неправильные дроби, среди них найти нужные, а потом перевернуть, чтобы меньше рассуждений было. Найдем, например, только правильные дроби для этого случая. итак. если (10в+а)*с=(10с+в)*а, то 10вс+ас=10ас+ав, тогда -ав=9ас-10вс; справа заберем вс в левую часть и вынесем девятку за скобку. вс-ав=9ас-9вс; вс-ав=9с(а-в);
в(с -а)=9с*(а-в); Т.к. с-a>0, то а-в>0, а-в ≥1, умножим обе части на 9с*(а-в)≥ 9с*1, а это в свою очередь больше 9(с-а)≥в(с-а) Усилим неравенство, 9с(а-в)> в(с-а) но это неверно. значит, среди правильных дробей нет таких. которые мы ищем.
и последний случай ав/вс, тогда (10a + b)c = (10b + c)a, 10ас+вс=10ав+ас; вс=9ав+ав+ас-10ас; вс-ав=9ав-9ас; в(с-а)=9а(в-с)
обе части положительны, с-а>0, в-с>0 , получается, что с>а, в>с. с-а не может быть равно 9, но левая часть делится на 9, тогда в делится на три, это могут быть 3, 6, или 9. Если в=3, то 3-с=1, с=2, тогда а =1
Получаем 13/32, нет одинаковых, нечего Васе вычеркивать.
Если в=6, то с-а=3, а =1, с=4, или а=2, тогда с=5. Получили числа или 16/64, 26/65 . Два числа и им обратные. Всего четыре.
Если в=9, то 9*(с-а)=9*а(9-с), (с-а)/а=9-с; (с/а)+с=10; перебирая а, выходим на с, если а=1, то 2с=10, с=5; если а=2, с получаем дробное с. из оставшихся цифр подходит только а=4 , тогда 5с=40; с=8, Еще две дроби 19/95; 49/98. Всего вместе с обратными неправильными дробями четыре.
Теперь посчитаем все, что получилось. 9+9+4+4=26.



Давайте разберемся с этой задачей.
Из условия видно, что числитель и знаменатель дроби могут содержать одинаковые цифры, которые будут зачеркиваться. Например, если у нас есть дробь 22/220, Вася сократит её до 2/20, так как он зачеркнет одинаковые цифры "2" в числителе и знаменателе.
Давайте рассмотрим возможные случаи для двузначных чисел:
Если в числителе и знаменателе есть нули (например, 10/01), то такие дроби нельзя учитывать, так как они не определены.
Если в числителе и знаменателе есть одинаковые ненулевые цифры (например, 11/11), то такая дробь всегда будет равна 1 и считается правильно сокращенной.
Если в числителе и знаменателе есть разные ненулевые цифры (например, 12/21), то такая дробь может быть сокращена до 1/2.
Итак, существует два варианта дробей, которые Вася может правильно сократить:
Дроби, где числитель и знаменатель одинаковы и состоят из ненулевых цифр (11/11, 22/22, ..., 99/99) - всего 9 дробей.
Дроби, где числитель и знаменатель состоят из разных ненулевых цифр (12/21, 13/31, ..., 98/89) - всего 72 дроби.
Итак, общее количество сократимых дробей с двузначными числителем и знаменателем, которые Вася может получить, составляет 9 + 72 = 81 дробь.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili