Вопрос задан 05.07.2023 в 05:05. Предмет Математика. Спрашивает Жарова Ксюша.

Найдите значения x при котором график функции y=(√3-2)x-√3 лежит выше графика функции y=(1+√3)x+ 2√3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Михайлова Юля.

Ответ:

-√3х+2х+у+3√3=0

у=√3х-2х-√3

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы найти значения x, при которых график функции y = (√3 - 2)x - √3 лежит выше графика функции y = (1 + √3)x + 2√3, нужно сравнить значения y для различных значений x. График функции y = (√3 - 2)x - √3 будет выше графика функции y = (1 + √3)x + 2√3 в тех точках, где значение y для первой функции больше, чем значение y для второй функции.

Давайте сравним две функции:

y1 = (√3 - 2)x - √3 y2 = (1 + √3)x + 2√3

Чтобы найти значения x, при которых y1 > y2, можно записать неравенство:

(√3 - 2)x - √3 > (1 + √3)x + 2√3

Теперь решим это неравенство:

√3x - 2x - √3 > x + √3x + 2√3

-√3x - √3 > x + √3x + 2√3

-√3x - √3x - √3 > x + 2√3

-2√3x - √3 > x + 2√3

-3√3x > x + 3√3

-4√3x > 3√3

x < -3/4

Итак, график функции y = (√3 - 2)x - √3 будет лежать выше графика функции y = (1 + √3)x + 2√3 при значениях x, которые меньше -3/4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос