
Arccos(-√3/2)+arcsin√3/2


Ответы на вопрос

Ответ: решение во вложении




To evaluate the expression arccos(-√3/2) + arcsin(√3/2), we can use the trigonometric identities for the inverse cosine (arccos) and inverse sine (arcsin) functions.
Recall that the arccos function gives the angle whose cosine is a given value, and the arcsin function gives the angle whose sine is a given value.
First, let's evaluate arccos(-√3/2):
arccos(-√3/2) = π - arccos(√3/2)
The reason for this is that the cosine function is negative in the second and third quadrants of the unit circle, and arccos always gives a value between 0 and π. Therefore, arccos(-√3/2) is equivalent to subtracting the value of arccos(√3/2) from π.
Now, let's evaluate arcsin(√3/2):
arcsin(√3/2) = π/2
The sine function is positive in the first and second quadrants, and arcsin always gives a value between -π/2 and π/2. Since √3/2 corresponds to the value of sin(π/3), the arcsin of √3/2 is π/3 or 60 degrees.
Now, substituting the values we found back into the expression:
arccos(-√3/2) + arcsin(√3/2) = (π - arccos(√3/2)) + (π/2)
Since arccos(√3/2) = π/3, we can simplify further:
(π - arccos(√3/2)) + (π/2) = (π - π/3) + (π/2) = (2π/3) + (π/2)
Adding the fractions:
(2π/3) + (π/2) = (4π/6) + (3π/6) = (7π/6)
Therefore, arccos(-√3/2) + arcsin(√3/2) equals (7π/6) or approximately 3.66519142918809.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili