
Вопрос задан 02.07.2023 в 14:43.
Предмет Математика.
Спрашивает Кудайберген Нурлан.
Нок и нод чисел 3 и 33


Ответы на вопрос

Отвечает Иванов Николай.
Ответ:
Наибольший общий делитель НОД (3; 33) = 3
Наименьшее общее кратное НОК (3; 33) = 33



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
НОК (наименьшее общее кратное) двух чисел - это наименьшее положительное число, которое делится на оба заданных числа без остатка.
НОД (наибольший общий делитель) двух чисел - это наибольшее положительное число, которое делится на оба заданных числа без остатка.
Давайте найдем НОК и НОД для чисел 3 и 33.
Чтобы найти НОК, можно воспользоваться следующей формулой:
НОК(a, b) = |a * b| / НОД(a, b)
Для чисел 3 и 33:
НОД(3, 33) = 3 (так как 3 является наибольшим делителем обоих чисел) НОК(3, 33) = |3 * 33| / 3 = 99
Итак, НОК(3, 33) = 99, а НОД(3, 33) = 3.


Похожие вопросы

Математика 20
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili