
Вопрос задан 27.06.2023 в 12:58.
Предмет Математика.
Спрашивает Халюшева Арина.
Определите, верно ли утверждение: «Число (1! + 2! + 3! + … + n!) делится на 3 при всех натуральных
значениях n > 2»?

Ответы на вопрос

Отвечает Башева Вера.
Ответ:
не точно!!!
Пошаговое объяснение:
вррде бы данное утверждение верно, на сколько я понимаю, вкдь на 3 делеися



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Это утверждение неверно. Чтобы определить, делится ли число на 3 при всех натуральных значениях , давайте рассмотрим несколько начальных значений.
1! + 2! + 3! = 1 + 2 + 6 = 9. 9 не делится на 3.
1! + 2! + 3! + 4! = 1 + 2 + 6 + 24 = 33. 33 делится на 3.
Из этих примеров видно, что утверждение не выполняется при , но выполняется при . Это означает, что утверждение неверно. Для некоторых значений число будет делиться на 3, а для некоторых - нет.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili