
1+3+5+7+9+...............+997+999


Ответы на вопрос

Ответ:
1+3+5+7+9+11+13+15+17+20+997+999+1001+1005+1010



Ответ:
1+3+5+7+9+10+997+999=2.031



To find the sum of an arithmetic series like this, you can use the following formula:
Sum = (n/2) * [2a + (n-1)d]
Where:
- Sum is the sum of the series.
- n is the number of terms.
- a is the first term.
- d is the common difference between consecutive terms.
In this series, the first term (a) is 1, the common difference (d) is 2 (since each term increases by 2), and we want to find the sum of all odd integers from 1 to 999, so n is the number of terms.
To find n, we can use the formula for the nth term of an arithmetic series:
nth term = a + (n-1)d
In this case, we want to find the nth term, which is 999:
999 = 1 + (n-1) * 2
Now, solve for n:
998 = (n-1) * 2
Divide both sides by 2:
499 = n - 1
Add 1 to both sides:
n = 500
Now that we know n is 500, we can plug these values into the sum formula:
Sum = (n/2) * [2a + (n-1)d] Sum = (500/2) * [2 * 1 + (500-1) * 2] Sum = 250 * [2 + 999 * 2] Sum = 250 * [2 + 1998] Sum = 250 * 2000 Sum = 500,000
So, the sum of the odd integers from 1 to 999 is 500,000.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili