
Вопрос задан 27.06.2023 в 06:19.
Предмет Математика.
Спрашивает Рыжикова Яна.
Найти облость определения y=log2(3-x)


Ответы на вопрос

Отвечает Александрова Александра.
Ответ:
изи
y=log2(3-x)
3-x>0
-x>-3 /*-1
x<3
x∈(-∞;3)
Пошаговое объяснение:
При умножение на -1 , знак меняеться местами



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения области определения функции y = log2(3 - x) нужно учесть, что логарифм с основанием 2 (log2) определен только для положительных аргументов. Это значит, что выражение внутри логарифма (3 - x) должно быть больше нуля:
3 - x > 0
Чтобы найти область определения, решим это неравенство:
3 - x > 0
Теперь выразим x:
x < 3
Область определения функции y = log2(3 - x) - это все действительные числа x, которые меньше 3. В математической нотации это можно записать как:
x ∈ (-∞, 3)
Таким образом, область определения функции y = log2(3 - x) - это интервал от минус бесконечности до 3 (не включая 3).


Похожие вопросы

Математика 36
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili