Вопрос задан 25.06.2023 в 07:50. Предмет Математика. Спрашивает Игиликова Арайлым.

ПОМОГИТЕ !! УМОЛЯЮ, ВСЕГО СВЯТОГО РАДИ !!!! В компании из 2021 гномов есть правдолюбы и лгуны.

Правдолюбы всегда говорят правду, а лгуны врут, после чего становятся правдолюбами. Каждый гном по очереди отвечает на вопрос, сколько среди них правдолюбов. Ответами были числа 1, 2, …, 2021 (числа могут быть в разном порядке). Какое число правдолюбов могло быть первоначально?В поле для ответа впиши только числовое значение: ... ?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Курявский Илья.

Ответ:

Пошаговое объяснение:

Либо 13  Либо 99

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы определить, какое число правдолюбов могло быть первоначально, давайте рассмотрим ситуацию:

  1. Если в начале был только один правдолюб, то он всегда будет говорить правду, и первым ответом будет число 1.

  2. Если в начале было два правдолюба, то они тоже всегда будут говорить правду. Первый из них скажет "2", а второй - "1", так как он слышит ответ первого. После этого второй станет лгуном, но этот ответ не имеет значения. Таким образом, ответами будут числа 2 и 1.

  3. Если в начале было три правдолюба, то первый скажет "3", второй скажет "2" (слыша ответ первого), а третий скажет "2" (слыша ответ второго). После этого второй и третий станут лгунами и скажут "1". Таким образом, ответами будут числа 3, 2 и 1.

Можно продолжить анализ аналогичным образом для большего количества правдолюбов. Таким образом, первоначально могло быть любое число от 1 до 3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос