Вопрос задан 19.06.2023 в 22:43. Предмет Математика. Спрашивает Рыбалко Сергей.

Гена купил чебурашке два килограмма мандаринов и три килограмма апельсинов потратив всего 1000

рублей.при этом за мандарины он заплатил на 40 рублей больше чем за апельсины.Старуха Шапокляк также купила чебурашке мандаринов и апельсинов причем за мандарины она заплатила в 8 раз меньше денег чем за апельсины.Сколько стоил килограмм мандаринов?И чего больше купила старуха шапокляк,мандаринов или апельсинов и во сколько раз?Сколько стоил килограмм апельсинов
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ли Феликс.

Пошаговое объяснение:

2x+5•(1 5-500)=3.200

2x+7 5-2.500=3.200

9 5x=5.700

x=600


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Обозначим стоимость одного килограмма мандаринов как \(М\) и одного килограмма апельсинов как \(А\).

Из условия задачи у нас есть следующие данные:

1. Гена купил два килограмма мандаринов и три килограмма апельсинов за 1000 рублей. Мы можем выразить это уравнением:

\[2М + 3А = 1000.\]

2. Гена заплатил за мандарины на 40 рублей больше, чем за апельсины:

\[2М = 3А + 40.\]

3. Старуха Шапокляк заплатила за мандарины в 8 раз меньше денег, чем за апельсины:

\[М = \frac{1}{8}А.\]

Теперь решим эту систему уравнений. Для этого преобразуем уравнения так, чтобы избавиться от дробей и найти значения \(М\) и \(А\).

Умножим последнее уравнение на 8:

\[8М = А.\]

Теперь мы можем заменить \(М\) во втором уравнении:

\[2(8М) = 3А + 40,\]

\[16М = 3А + 40.\]

Теперь у нас есть система из двух уравнений:

\[\begin{cases} 2М + 3А = 1000 \\ 16М = 3А + 40 \end{cases}.\]

Решим эту систему. Выразим \(М\) из второго уравнения и подставим его в первое:

\[М = \frac{3}{16}А + \frac{40}{16}.\]

Теперь подставим это значение \(М\) в первое уравнение:

\[2\left(\frac{3}{16}А + \frac{40}{16}\right) + 3А = 1000,\]

\[ \frac{3}{8}А + \frac{40}{8} + 3А = 1000,\]

\[ \frac{11}{8}А = 960.\]

Теперь найдем \(А\):

\[А = \frac{8}{11} \cdot 960 \approx 698.18 \text{ рублей}.\]

Теперь найдем \(М\), подставив значение \(А\) обратно в уравнение \(М = \frac{3}{16}А + \frac{40}{16}\):

\[М = \frac{3}{16} \cdot 698.18 + \frac{40}{16} \approx 163.18 \text{ рублей}.\]

Таким образом, стоимость одного килограмма мандаринов - около 163.18 рублей, апельсинов - около 698.18 рублей.

Теперь мы можем ответить на вопросы задачи:

1. Сколько стоил килограмм мандаринов? - Около 163.18 рублей.

2. Чего больше купила старуха Шапокляк, мандаринов или апельсинов, и во сколько раз? - Мы видим, что старуха Шапокляк купила мандаринов \(М\) и апельсинов \(А\), где \(М = \frac{1}{8}А\). Таким образом, мандаринов она купила меньше. Отношение количества мандаринов к апельсинам: \(\frac{М}{А} = \frac{1}{8}\).

3. Сколько стоил килограмм апельсинов? - Около 698.18 рублей.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос