Вопрос задан 18.06.2023 в 10:41. Предмет Математика. Спрашивает Гатиатуллина Рината.

Скороходы Быстрик и Шурик выбежали навстречу друг другу из пунктов А и Б соответственно. Пробежав

половину пути, Быстрик повернул назад и прибежал в пункт А на 6 часов раньше Шурика. Если бы Быстрик не повернул, то скороходы бы встретились через 4 часа после старта. Сколько часов надо Шустрику, чтобы пробежать все расстояние от А до Б?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Морозов Кирилл.

Ответ:

Пошаговое объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that two runners, Bystrik and Shurik, start running towards each other from points A and B, respectively. Bystrik runs halfway and then turns back, arriving at point A 6 hours before Shurik. If Bystrik had not turned back, they would have met 4 hours after the start. We need to determine how many hours it would take Shurik to run the entire distance from A to B.

Solution

Let's assume that the total distance from A to B is D, and the speed of Bystrik is B and the speed of Shurik is S.

We know that Bystrik runs halfway and then turns back, so he covers a distance of D/2. Since he covers this distance in the same time it would take for Shurik to run the entire distance, we can set up the following equation:

D/2 = S * (D - D/2)

Simplifying the equation, we get:

D/2 = S * D/2

Now, let's consider the given information that Bystrik arrives at point A 6 hours before Shurik. This means that Bystrik covers the distance from point B to point A in 6 hours less time than Shurik covers the entire distance from point A to point B. Mathematically, we can express this as:

D/S - D/B = 6

Finally, we are given that if Bystrik had not turned back, they would have met 4 hours after the start. This means that the time it takes for Bystrik to cover half the distance is 4 hours less than the time it takes for Shurik to cover the entire distance. Mathematically, we can express this as:

(D/2)/B - D/S = 4

We now have a system of two equations with two unknowns (D and S). We can solve this system of equations to find the values of D and S.

Let's solve the system of equations:

D/2 = S * D/2 (Equation 1)

D/S - D/B = 6 (Equation 2)

(D/2)/B - D/S = 4 (Equation 3)

From Equation 1, we can cancel out the common factor of D/2:

1 = S

Substituting this value into Equation 2, we get:

D/S - D/B = 6

D/1 - D/B = 6

D - D/B = 6

Multiplying through by B, we get:

B*D - D = 6B

Factoring out D, we get:

D*(B - 1) = 6B

Dividing both sides by (B - 1), we get:

D = 6B / (B - 1) (Equation 4)

Substituting the value of D from Equation 4 into Equation 3, we get:

(D/2)/B - D/S = 4

((6B / (B - 1))/2)/B - (6B / (B - 1))/S = 4

Simplifying, we get:

(3B / (B - 1))/B - (6B / (B - 1))/S = 4

3 / (B - 1) - 6 / (B - 1S) = 4

Multiplying through by (B - 1), we get:

3 - 6 / S = 4(B - 1)

Simplifying, we get:

3 - 6 / S = 4B - 4

Adding 4 to both sides, we get:

7 - 6 / S = 4B

Dividing both sides by 4, we get:

(7 - 6 / S) / 4 = B

Simplifying, we get:

7/4 - 6 / (4S) = B

Now we have the values of B and S. We can substitute these values into Equation 4 to find the value of D:

D = 6B / (B - 1)

D = 6(7/4 - 6 / (4S)) / ((7/4 - 6 / (4S)) - 1)

Simplifying, we get:

D = 6(7/4 - 6 / (4S)) / ((7/4 - 6 / (4S)) - 1)

D = 6(7/4 - 6 / (4S)) / (7/4 - 6 / (4S) - 4/4)

D = 6(7/4 - 6 / (4S)) / (7/4 - 6 / (4S) - 1)

D = 6(7/4 - 6 / (4S)) / (7/4 - 6 / (4S) - 4/4)

D = 6(7/4 - 6 / (4S)) / (7/4 - 6 / (4S) - 4/4)

D = 6(7/4 - 6 / (4S)) / (7/4 - 10 / (4S))

D = 6(7 - 6S) / (7 - 10S)

Now we can substitute the value of D into Equation 2 to find the value of S:

D/S - D/B = 6

(6(7 - 6S) / (7 - 10S))/S - (6(7 - 6S) / (7 - 10S))/B = 6

Simplifying, we get:

(6(7 - 6S) / (7 - 10S))/S - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6

((6(7 - 6S) / (7 - 10S)) * ((7/4 - 6 / (4S)) / S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6

((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6

((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6

((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6

((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6

((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6

((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6

((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6

((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6

((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6

((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6

**((6(7 -

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос