
Скороходы Быстрик и Шурик выбежали навстречу друг другу из пунктов А и Б соответственно. Пробежав
половину пути, Быстрик повернул назад и прибежал в пункт А на 6 часов раньше Шурика. Если бы Быстрик не повернул, то скороходы бы встретились через 4 часа после старта. Сколько часов надо Шустрику, чтобы пробежать все расстояние от А до Б?

Ответы на вопрос

Ответ:
Пошаговое объяснение:




Problem Analysis
We are given that two runners, Bystrik and Shurik, start running towards each other from points A and B, respectively. Bystrik runs halfway and then turns back, arriving at point A 6 hours before Shurik. If Bystrik had not turned back, they would have met 4 hours after the start. We need to determine how many hours it would take Shurik to run the entire distance from A to B.Solution
Let's assume that the total distance from A to B is D, and the speed of Bystrik is B and the speed of Shurik is S.We know that Bystrik runs halfway and then turns back, so he covers a distance of D/2. Since he covers this distance in the same time it would take for Shurik to run the entire distance, we can set up the following equation:
D/2 = S * (D - D/2)
Simplifying the equation, we get:
D/2 = S * D/2
Now, let's consider the given information that Bystrik arrives at point A 6 hours before Shurik. This means that Bystrik covers the distance from point B to point A in 6 hours less time than Shurik covers the entire distance from point A to point B. Mathematically, we can express this as:
D/S - D/B = 6
Finally, we are given that if Bystrik had not turned back, they would have met 4 hours after the start. This means that the time it takes for Bystrik to cover half the distance is 4 hours less than the time it takes for Shurik to cover the entire distance. Mathematically, we can express this as:
(D/2)/B - D/S = 4
We now have a system of two equations with two unknowns (D and S). We can solve this system of equations to find the values of D and S.
Let's solve the system of equations:
D/2 = S * D/2 (Equation 1)
D/S - D/B = 6 (Equation 2)
(D/2)/B - D/S = 4 (Equation 3)
From Equation 1, we can cancel out the common factor of D/2:
1 = S
Substituting this value into Equation 2, we get:
D/S - D/B = 6
D/1 - D/B = 6
D - D/B = 6
Multiplying through by B, we get:
B*D - D = 6B
Factoring out D, we get:
D*(B - 1) = 6B
Dividing both sides by (B - 1), we get:
D = 6B / (B - 1) (Equation 4)
Substituting the value of D from Equation 4 into Equation 3, we get:
(D/2)/B - D/S = 4
((6B / (B - 1))/2)/B - (6B / (B - 1))/S = 4
Simplifying, we get:
(3B / (B - 1))/B - (6B / (B - 1))/S = 4
3 / (B - 1) - 6 / (B - 1S) = 4
Multiplying through by (B - 1), we get:
3 - 6 / S = 4(B - 1)
Simplifying, we get:
3 - 6 / S = 4B - 4
Adding 4 to both sides, we get:
7 - 6 / S = 4B
Dividing both sides by 4, we get:
(7 - 6 / S) / 4 = B
Simplifying, we get:
7/4 - 6 / (4S) = B
Now we have the values of B and S. We can substitute these values into Equation 4 to find the value of D:
D = 6B / (B - 1)
D = 6(7/4 - 6 / (4S)) / ((7/4 - 6 / (4S)) - 1)
Simplifying, we get:
D = 6(7/4 - 6 / (4S)) / ((7/4 - 6 / (4S)) - 1)
D = 6(7/4 - 6 / (4S)) / (7/4 - 6 / (4S) - 4/4)
D = 6(7/4 - 6 / (4S)) / (7/4 - 6 / (4S) - 1)
D = 6(7/4 - 6 / (4S)) / (7/4 - 6 / (4S) - 4/4)
D = 6(7/4 - 6 / (4S)) / (7/4 - 6 / (4S) - 4/4)
D = 6(7/4 - 6 / (4S)) / (7/4 - 10 / (4S))
D = 6(7 - 6S) / (7 - 10S)
Now we can substitute the value of D into Equation 2 to find the value of S:
D/S - D/B = 6
(6(7 - 6S) / (7 - 10S))/S - (6(7 - 6S) / (7 - 10S))/B = 6
Simplifying, we get:
(6(7 - 6S) / (7 - 10S))/S - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6
((6(7 - 6S) / (7 - 10S)) * ((7/4 - 6 / (4S)) / S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6
((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6
((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6
((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6
((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6
((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6
((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6
((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6
((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6
((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6
((6(7 - 6S) * (7/4 - 6 / (4S))) / ((7 - 10S) * S)) - (6(7 - 6S) / (7 - 10S))/(7/4 - 6 / (4S)) = 6
**((6(7 -


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili