
На заводе 30% произведённых подшипников имеют дефект. при контроле качества продукции выявляется
65% дефектных подшипников. остальные подшипники поступают в продажу. найдите вероятность того, что случайно выбранный при покупке подшипник не имеет дефектов. если ответ округлите до сотых Помогите............ 

Ответы на вопрос

Ответ:
Пошаговое объяснение:
Пусть X - количество произведенных подшипников.
Тогда 0,7X - количество подшипников, не имеющих дефект.
0,3X - количество подшипников с дефектом до контроля качества.
0,3*(1-0,65)X = 0,105X - количество дефектных подшипников, поступивших в продажу после контроля качества.
Тогда вероятность того, что случайно выбранный при покупке подшипник не имеет дефектов равна:
P = 0,7X/(0,105X+0,7X) = 0,7/0,805 = 0,8695...
Округляя до сотых, получаем 0,87.



Calculation of the Probability
To find the probability that a randomly selected bearing does not have defects, we need to consider the information provided.
According to the given information: - 30% of the bearings produced at the factory have defects. - During quality control, 65% of the defective bearings are identified. - The remaining bearings, which are not identified as defective during quality control, are sold.
To calculate the probability that a randomly selected bearing does not have defects, we can use the following steps:
1. Calculate the probability that a bearing has defects: - 30% of the bearings produced have defects.
2. Calculate the probability that a defective bearing is identified during quality control: - 65% of the defective bearings are identified during quality control.
3. Calculate the probability that a bearing does not have defects: - This can be calculated by subtracting the probability of a defective bearing being identified during quality control from 1.
Let's calculate the probability step by step.
Step 1: Calculate the probability that a bearing has defects
The probability that a bearing has defects is given as 30%.
Probability of a bearing having defects = 30% = 0.30
Step 2: Calculate the probability that a defective bearing is identified during quality control
The probability that a defective bearing is identified during quality control is given as 65%.
Probability of a defective bearing being identified during quality control = 65% = 0.65
Step 3: Calculate the probability that a bearing does not have defects
To calculate the probability that a bearing does not have defects, we subtract the probability of a defective bearing being identified during quality control from 1.
Probability of a bearing not having defects = 1 - Probability of a defective bearing being identified during quality control
Let's calculate this:
Probability of a bearing not having defects = 1 - 0.65 = 0.35
Therefore, the probability that a randomly selected bearing does not have defects is 0.35.
Please note that the calculated probability is rounded to the nearest hundredth, as requested.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili