
При каком значении а уравнение (а-6)х=28 имеет корень равный 7 , не имеет корней и (а-2)х=45 имеет
корень равный,5 не имеет корней.СРОЧНО ДАМ 200 БАЛЛОВ!!!!!!!!! СРОЧНО!!!

Ответы на вопрос

Ответ:
1)имеет корень 7 когда х=28,не имеет корней при х=0
2)иммет корень 5 когда х=15,не имееь корней при х=0
Пошаговое объяснение:



Ответ:
Пошаговое объяснение:
а)
(а-6)х=28
х=7
(а-6)*7=28
а-6=4
а=4+6=10.
Не имеет корней:
а-6=0
а=6.
б)
(а-2)х=45
х=5
а-2=45/5=9
а=9+2=11
Не имеет корней:
а-2=0
а=2.



Solving the Equation for Different Values of a
To find the values of a for which the equation (a-6)x=28 has a root equal to 7, no roots, and the equation (a-2)x=45 has a root equal to 5 and no roots, we can use the concept of discriminant in quadratic equations.
1. (a-6)x=28 has a root equal to 7: - For the equation to have a root, the discriminant should be greater than or equal to 0. - The discriminant, D, for the equation ax^2 + bx + c = 0 is given by D = b^2 - 4ac. - In this case, the discriminant for the equation (a-6)x=28 is D = 0^2 - 4(a-6)(-28) = 112a - 672. - For the equation to have a root equal to 7, the discriminant should be greater than or equal to 0: 112a - 672 ≥ 0.
2. (a-6)x=28 has no roots: - For the equation to have no roots, the discriminant should be less than 0: 112a - 672 < 0.
3. (a-2)x=45 has a root equal to 5: - Similarly, for the equation (a-2)x=45, the discriminant is D = 0^2 - 4(a-2)(-45) = 180 - 4a. - For the equation to have a root equal to 5, the discriminant should be greater than or equal to 0: 180 - 4a ≥ 0.
4. (a-2)x=45 has no roots: - For the equation to have no roots, the discriminant should be less than 0: 180 - 4a < 0.
Calculating the Values of a
Now, let's calculate the values of a based on the conditions derived above.
1. For (a-6)x=28 to have a root equal to 7: - 112a - 672 ≥ 0 - Solving for a: a ≥ 6
2. For (a-6)x=28 to have no roots: - 112a - 672 < 0 - Solving for a: a < 6
3. For (a-2)x=45 to have a root equal to 5: - 180 - 4a ≥ 0 - Solving for a: a ≤ 45
4. For (a-2)x=45 to have no roots: - 180 - 4a < 0 - Solving for a: a > 45
Conclusion
Based on the calculations, the values of a for the given conditions are as follows: - (a-6)x=28 has a root equal to 7 when a ≥ 6. - (a-6)x=28 has no roots when a < 6. - (a-2)x=45 has a root equal to 5 when a ≤ 45. - (a-2)x=45 has no roots when a > 45.Therefore, the values of a for the given conditions are: - (a-6)x=28 has a root equal to 7 when a ≥ 6. - (a-6)x=28 has no roots when a < 6. - (a-2)x=45 has a root equal to 5 when a ≤ 45. - (a-2)x=45 has no roots when a > 45.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili