
В цеху два одинаковых станка-автомата. Сначала 6 ч заказ выполнял один станок, потом к работе
подключился второй станок и, оставшуюся часть заказа, два станка выполнили вместе. Сколько часов потребовалось на выполнение всего заказа, если каждый станок может выполнить заказ за 66 ч. ?

Ответы на вопрос

Ответ:
36 часов потребуется на выполнение всего заказа.
Пошаговое объяснение:
Производительность 1го и 2го станка
За 6 часов 1-й станок выполнить часть работы, т.е .им обоим нужно выполнить
частей работы
Производительность(сколько они могут выполнить за час) работы 2-х станков одновременно :
Оставшуюся часть заказа они выполнят за
часов
Всего на выполнение заказа понадобится 30+6=36 часов



Я могу помочь вам решить эту задачу.
Пусть x - это количество часов, которое потребовалось на выполнение всего заказа. Тогда мы можем составить уравнение:
$$\frac{6}{66}+\frac{x-6}{66}+\frac{x-6}{66}=1$$
Это уравнение следует из того, что за 6 часов один станок выполнил $\frac{6}{66}$ часть заказа, а за оставшееся время x-6 часов два станка выполнили $\frac{x-6}{66}+\frac{x-6}{66}$ часть заказа. Сумма этих дробей должна быть равна 1, так как вся работа была выполнена.
Решая это уравнение, мы получаем:
$$x=\frac{66}{2}+6=39$$
Ответ: на выполнение всего заказа потребовалось 39 часов.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili