Вопрос задан 16.06.2023 в 17:45. Предмет Математика. Спрашивает Котов Егор.

ПОЖАЛУЙСТА, ПОМОГИТЕ, ОЧЕНЬ НАДО Найдите градусную меру 1/8 части суммы внутренних углов

Выпуклого многоугольника, число вершин которого является корнем уравнения 7n - 28 = 0.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Суворова Ирина.

Ответ:

Пошаговое объяснение:

1). 7n-28=0.   7n=28.  n=4- т. е. это выпуклый 4-х угольник, сумма внутренних углов которого 360°

2) 360°*1/8=360°:8=45°.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти градусную меру 1/8 части суммы внутренних углов выпуклого многоугольника, нам нужно сначала найти количество вершин многоугольника. Для этого решим уравнение 7n - 28 = 0, где n - количество вершин.

7n - 28 = 0

Добавим 28 к обеим сторонам уравнения:

7n = 28

Разделим обе стороны на 7:

n = 4

Таким образом, количество вершин многоугольника равно 4.

Далее, чтобы найти сумму внутренних углов выпуклого многоугольника, мы можем использовать формулу:

Сумма внутренних углов = (n - 2) * 180 градусов,

где n - количество вершин.

Подставляем значение n = 4:

Сумма внутренних углов = (4 - 2) * 180 градусов = 2 * 180 градусов = 360 градусов.

Теперь нам нужно найти градусную меру 1/8 части суммы внутренних углов:

1/8 * 360 градусов = 45 градусов.

Таким образом, градусная мера 1/8 части суммы внутренних углов выпуклого многоугольника равна 45 градусов.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос