
(х-7)^-х^=0 значок^ степень 2. Решить уравнение с решением.


Ответы на вопрос





Solving the Equation (x-7)^-x^=0^2
To solve the equation (x-7)^-x^=0^2, we need to find the value of x that satisfies the equation.
The equation can be rewritten as (x-7)^-x^=0.
Let's solve the equation step by step.
First, let's rewrite the equation in a more conventional form:
(x-7)^-x^ = 0
Now, we need to find the value of x that satisfies this equation.
Solution:
To solve the equation (x-7)^-x^=0, we can start by considering the properties of exponents and the concept of zero exponent.
The equation (x-7)^-x^=0 implies that the base (x-7) raised to the power of -x equals zero. However, any non-zero number raised to the power of a negative number cannot equal zero. Therefore, there are no real solutions for x that satisfy the given equation.
In conclusion, the equation (x-7)^-x^=0 has no real solutions.
This means that there are no real values of x that make the equation true.
Therefore, the solution to the equation (x-7)^-x^=0 is that there are no real solutions for x.
I hope this helps! If you have any further questions, feel free to ask.


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili