
Сумма трёх чисел равна 225. Известно, что первое число составляет 17 % от суммы, а второе число в 3
раза больше первого. Найди третье число. Ответ:СРОЧНО ПОЖАЛУЙСТА ДАЮ СОРОК БАЛЛОВ!!!

Ответы на вопрос

Ответ:
Пошаговое объяснение:
17 % = 17 : 1 00 = 0,17
Сумма 3-ёх чисел = 225
1 число = 0,17 * 225 = 38,25
2 число = 3 * 38,25 = 114,75
3 число = 225 - (38,25 + 114,75) =
225 - 75 = 150
Ответ: 150



Problem Analysis
We are given that the sum of three numbers is 225. The first number is 17% of the sum, and the second number is 3 times the first number. We need to find the third number.Solution
Let's solve this problem step by step.1. Let's represent the three numbers as x, y, and z. 2. We know that the sum of the three numbers is 225, so we can write the equation: x + y + z = 225. 3. We are also given that the first number (x) is 17% of the sum, which can be written as: x = 0.17 * (x + y + z). 4. Additionally, we know that the second number (y) is 3 times the first number, so we can write: y = 3x. 5. Now, we can substitute the value of x from equation 3 into equation 4: y = 3 * (0.17 * (x + y + z)). 6. Simplifying equation 5, we get: y = 0.51 * (x + y + z). 7. We can substitute the value of y from equation 6 into equation 2: 0.51 * (x + y + z) + z = 225. 8. Simplifying equation 7, we get: 0.51x + 0.51y + 0.51z + z = 225. 9. Combining like terms, we have: 0.51x + 0.51y + 1.51z = 225. 10. Now, we have a system of three equations: - x + y + z = 225 - x = 0.17 * (x + y + z) - 0.51x + 0.51y + 1.51z = 225 11. We can solve this system of equations to find the values of x, y, and z.
Let's solve the system of equations using substitution method:
From equation 2, we have: x = 0.17 * (x + y + z)
Simplifying equation 2, we get: x = 0.17x + 0.17y + 0.17z
Rearranging terms, we have: 0.83x - 0.17y - 0.17z = 0
Now, we can substitute the value of x from equation 1 into equation 3:
0.83x - 0.17y - 0.17z + y + z = 225
Simplifying equation 4, we get: 0.83x + 0.83y + 0.83z = 225
Now, we have a system of two equations:
0.83x - 0.17y - 0.17z = 0 0.83x + 0.83y + 0.83z = 225
We can solve this system of equations to find the values of x, y, and z.
Let's solve the system of equations:
Multiply equation 5 by 100 to eliminate decimals:
83x - 17y - 17z = 0 83x + 83y + 83z = 22500
Subtract equation 6 from equation 5:
(83x - 17y - 17z) - (83x + 83y + 83z) = 0 - 22500
Simplifying equation 7, we get: -100y - 100z = -22500
Divide equation 8 by -100:
y + z = 225
Now, we have a system of two equations:
y + z = 225 y = 3x
Substitute the value of y from equation 9 into equation 8:
3x + z = 225
Rearrange terms:
z = 225 - 3x
Substitute the value of z from equation 10 into equation 9:
y = 3x
Now, we have a system of two equations:
y = 3x z = 225 - 3x
Substitute the value of y and z from equations 11 and 12 into equation 1:
x + 3x + (225 - 3x) = 225
Simplifying equation 13, we get: x + 3x + 225 - 3x = 225
Combine like terms:
x = 0
Since x = 0, we can substitute this value into equations 11 and 12:
y = 3 * 0 = 0 z = 225 - 3 * 0 = 225
Therefore, the third number is 225.
Answer
The third number is 225.Please let me know if you need any further assistance.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili