Вопрос задан 12.06.2023 в 00:50. Предмет Математика. Спрашивает Гуртовая Алина.

в трёх школах 1.945 учеников. в первой и второй вместе 1.225 учеников, а во второй и третьей 1.300

учеников. сколько учеников в каждой школе? реши и проверь решение.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мушков Кирилл.

1) 1.945-1.225=720 (уч.)-в третьей школе 2) 1.945-1.300=645 (уч.)-в первой школе 3) 720+645=1.365 (уч.)-в первой и во второй школе вместе 4) 1.945-1.365=580 (уч.)-во второй школе
ответ: в первой школе-645 учеников; во второй школе-580 учеников; а в третьей школе-720 учеников.

0 0
Отвечает Ганиева Севиль.

Пошаговое объяснение:

Первым делом я узнал сколько учеников в третей школе, это я узнал вот так:

Сумма учеников в трех школах 1945, я отнял от него сумму учеников первой и второй школы.

1) 1945-1225=720- учеников в третей школе

Вторым действием я от суммы второй и третей школы отнял учеников третей школы, чтобы понять сколько учеников во второй школе

2) 1300-720=580- учеников во второй школе

И посоеднее третее действие я от суммы всех школ отнял сумму второй и третей, чтобы узнать сколько учеников в первой школе

3) 1945 - 1300= 645

Проверка:

645+580+720=1945 учеников

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Представим количество учеников в каждой школе как переменные: x для первой школы, y для второй школы и z для третьей школы. Тогда у нас есть следующие уравнения:

x + y + z = 1945 ...(1) (общее количество учеников в трех школах)

x + y = 1225 ...(2) (количество учеников в первой и второй школах)

y + z = 1300 ...(3) (количество учеников во второй и третьей школах)

Мы можем решить эту систему уравнений методом замещения. Из уравнения (2) можем выразить x через y:

x = 1225 - y

Подставим это значение x в уравнения (1) и (3):

(1225 - y) + y + z = 1945 ...(4)

y + z = 1300 ...(5)

Упростим уравнение (4):

1225 + z = 1945

z = 1945 - 1225 z = 720

Теперь подставим значение z в уравнение (5):

y + 720 = 1300

y = 1300 - 720 y = 580

И, наконец, подставим значения y и z в уравнение (2):

x + 580 = 1225

x = 1225 - 580 x = 645

Таким образом, количество учеников в каждой школе составляет: первая школа: 645 учеников вторая школа: 580 учеников третья школа: 720 учеников

Проверим решение:

645 + 580 + 720 = 1945 (верно) 645 + 580 = 1225 (верно) 580 + 720 = 1300 (верно)

Решение проверено и верно.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос