Вопрос задан 11.06.2023 в 16:21. Предмет Математика. Спрашивает Есинов Игорь.

HELP PLEASE |x +2| < |x|

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лабытнанский Денис.

To solve this inequality, we need to consider the different cases where the absolute value of x + 2 is less than the absolute value of x.

If x is positive, then |x| is equal to x, and we can rewrite the inequality as follows:

|x + 2| < x

Then we can subtract x from both sides of the inequality to get:

|x + 2| - x < 0

We can simplify the left side of the inequality as follows:

|x + 2 - x| < 0

This simplifies to:

|2| < 0

Since the absolute value of 2 is not less than 0, this inequality has no solution in the case where x is positive.

If x is negative, then |x| is equal to -x, and we can rewrite the inequality as follows:

|x + 2| < -x

Then we can add x to both sides of the inequality to get:

|x + 2| + x < 0

We can simplify the left side of the inequality as follows:

|x + 2 + x| < 0

This simplifies to:

|2x + 2| < 0

This inequality has no solution in the case where x is negative.

Therefore, the solution to the inequality |x + 2| < |x| is the empty set, which means that there are no values of x that satisfy the inequality.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequality |x + 2| < |x|, we can break it down into two cases based on the absolute value.

Case 1: x + 2 ≥ 0 (x is greater than or equal to -2) In this case, the absolute value of x + 2 is equal to x + 2. Similarly, the absolute value of x is also equal to x. So we can rewrite the inequality as follows: x + 2 < x

Now, let's solve the inequality: x + 2 < x Subtracting x from both sides: 2 < 0

Since the inequality 2 < 0 is false, there are no solutions in this case.

Case 2: x + 2 < 0 (x is less than -2) In this case, the absolute value of x + 2 is equal to -(x + 2) because x + 2 is negative. The absolute value of x is still equal to -x. So we can rewrite the inequality as follows: -(x + 2) < -x

Now, let's solve the inequality: -(x + 2) < -x Distributing the negative sign: -x - 2 < -x

The -x terms cancel out: -2 < 0

Since the inequality -2 < 0 is true, all values of x that are less than -2 satisfy the inequality.

Therefore, the solution to the inequality |x + 2| < |x| is x < -2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос